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Abstract. The aim of this paper is to present the impact of magnetic nonlinearities and saturation on the losses of an electric drive controlled by 
Quantitative Feedback Theory. For exact analysis of losses three magnetically different types of series wound DC motor dynamic models are 
presented and used in this work. As its main contribution this study shows that the modelling of magnetic nonlinearities improves control synthesis of 
electrical drive, which is reflected in lower energy consumption. For the purpose of control design of series wound DC motor Quantitative Feedback 
Theory was used. 
 
Streszczenie. W artykule przedstawiono analizę wpływu nieliniowości magnetycznych oraz saturacji na straty w maszynie elektrycznej, sterowanej 
metodą QFT. Badaniom poddano modele dynamiczne trzech  magnetycznie różnych, szeregowych maszyn DC. Wyniki pracy pokazują, że tego 
rodzaju analiza uskutecznia proces tworzenia algorytmu sterowania, co przekłada się na redukcję zużycia energii. (Wpływ modelowania 
nasycenia na wielkość strat w maszynie elektrycznej, sterowanej metodą QFT). 
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Introduction 
 The mathematical model of series wound DC motor 
(SWM) represents a real physical system written in 
equations related to system variables. Because of magnetic 
saturation, magnetic nonlinearities and the complexities of 
physical systems that we want to model it is most often 
impossible to avoid different assumptions and 
simplifications [1]. Because of these simplifications and 
assumptions different motor models are obtained, which 
behave differently in the controlled system. This paper 
presents the differences for three dynamic SWM models: 
magnetically linear model, magnetically nonlinear model 
with static inductances and magnetically nonlinear model 
with dynamic inductances. 
 For control design we have selected the “Quantitative 
Feedback Theory” method; also indicated as QFT. QFT is a 
robust control design method which in comparison to other 
robust control design methods offers a number of 
advantages. One of the most important ones is that QFT 
often results in simple controllers, which are easy to 
implement in real systems. 
 This paper presents an analysis of the influence of 
magnetic nonlinearities and magnetic saturation on the 
losses of an electric drive controlled by QFT. Electric drive 
in this case consists of a controller with QFT algorithm and 
SWM. Analysis of the losses and consequently energy 
consumption in the electric drive at dynamic changes (for 
example rotor acceleration) are the central issues of this 
paper. 
 
Dynamic models 
 Dynamic mathematical models of electrical machines 
from the controller point of view show the connection 
between their inputs and outputs and describe the 
dynamics of their operation. These models are useful for 
analysis of dynamic and static properties of electric drives. 
Mathematical model is obtained using theoretical and 
experimental modelling [1,2,3]. 
 Because of magnetic non-linearity electrical machines 
are used as dynamic models defined for one operating point 
in which they are ordinarily linearized, so they become 
magnetically linear models. For a wider range of 
observations we need magnetically nonlinear models with 
an appropriate way to model the magnetic saturation of 
iron. 

 Mathematical models are convenient for control design 
purposes, and they are complete when all parameters of 
the model are defined. Parameters can be determined 
numerically or experimentally. It is not always possible to 
carry out an experimental analysis, because of the 
limitations of the experimental system or dangerous 
conditions which might arise when electric values are out of 
range. Experimental analysis also cannot be performed, if 
the prototype of the electrical machine is not yet produced, 
i.e. if it is still in the design phase. In such cases 
mathematical models are convenient for performing 
dynamic and steady state analyses of the electrical drive. 
 The model includes nonlinearities and contains some 
physical parameters. The values of physical parameters are 
not known precisely and can be subject to some variation. 
These parameter variations are included as parameter 
uncertainties [4]. 
 Figures (1) and (2) illustrate the determination of 
inductance for all three dynamic models. 
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Fig.1. Inductance determination of a linear model 
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Fig.2. Static and dynamic inductance characteristic 
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 The following figures (3, 4 and 5) shows block diagrams 
of dynamic models used in the study. The main purpose of 
these presented diagrams is to show the differences among 
the models. 
 

Magnetically linear dynamic model 
Schematic presentation of a magnetically linear dynamic 

model is presented in Fig. 3. 

 
Fig.3. Block diagram of SWM magnetically linear dynamic 

model [1] 
 

For a magnetically linear dynamic model the inductance 
is constant and is determined with linearization in the 
operating point (Fig. 1) as a quotient of flux linkage Ψ and 
the corresponding current i. 

As it is known, magnetic material in the stator of the 
rotor is not as ideal as it is presented in magnetically linear 
models. To consider magnetic nonlinearities it is necessary 
to introduce the definition of static Ls and dynamic Ld 
inductances (Fig. 2), which indirectly describe the 
characteristics of the entire magnetic circuit [5]. 
 

Magnetically nonlinear dynamic model using static 
inductances Ls and dynamic inductances Ld 
 Magnetically nonlinear magnetic model using static 
inductances Ls is presented in Fig. 4. 
 

 
Fig.4. Block diagram of SWM magnetically nonlinear dynamic 
model using static inductances Ls [1] 
 

 Schematic presentation of magnetically nonlinear 
magnetic model using dynamic inductances Ld is given in 
Fig. 5. 

 
Fig.5. Block diagram of SWM magnetically nonlinear dynamic 

model using dynamic inductances Ld [1] 

 After the presentation of models the next step is the 
preparation of system transfer function, which is the basis 
for controller design. 
 

System model and transfer function 
 With model linearization and considering the 
uncertainties on a set of system working points a family of 
system linear models was obtained. A linearized motor 
model around a single working point is according to [4] 
described with equations (1) and (2): 
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 The block diagram of a linearized motor model is shown 
in Fig. 6: 
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Fig.6. Linearized motor model 
  

 Final linearized model (3) has been calculated from 
equations (1) and (2): 
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 Linearized model of SWM is described by a second 
order transfer function with four uncertain coefficients: 
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 For each model the coefficients of uncertainty intervals 
are calculated separately: 
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Where: 
a) is a magnetically linear dynamic model, 
b) is a magnetically nonlinear dynamic model using static 

inductances Ls, 
c) is a magnetically nonlinear dynamic model using 

dynamic inductances Ld. 
 

 Transfer functions of nominal models around the single 
working point at IA=10A and n=1500 min-1: 

(5)   0 2
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 Where transfer function (5) represents magnetically 
linear dynamic model linearized in nominal operating point, 
transfer function (6) represents magnetically nonlinear 
dynamic model using static inductances Ls and transfer 
function (7) represents magnetically nonlinear dynamic 
model using dynamic inductances Ld. 
 At this point we have obtained all the needed data for 
controller design, which is the next step of this study. 
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QFT control methodology 
 QFT control design was used to create a simple low-
order robust controller for motor velocity control for all three 
abovementioned magnetically different dynamic models. 
 QFT control design has been chosen to achieve 
reliability and robustness. QFT deals with robust stability 
margins and robust performance specifications (disturbance 
rejection, reference tracking, etc.) in the presence of system 
parameters uncertainty. The QFT approach converts 
closed-loop system specifications and model uncertainty 
into a set of constraints or boundaries for every frequency 
of interest, which need to be fulfilled by the nominal open-
loop transfer function [4]. Such an integration of information 
into a set of simple curves in a Nichols chart enables 
designing the controller by using only a single-nominal-
system model. In the controller design stage (loop shaping), 
the controller is synthesized by adding controller poles and 
zeros until the nominal loop lies near its boundaries. The 
optimal controller is obtained when it meets its boundaries 
and has the minimum high-frequency gain. 
 The QFT method demonstrates a general control 
strategy with two degrees of freedom structure that is 
presented in Fig. 7. In this block diagram of the system, the 
transfer function P(s) belongs to a set {P} of plants with 
uncertainties; C(s) and F(s) denote the controller and the 
prefilter, which are to be synthesized in order to meet robust 
stability and closed-loop specification and H(s) denotes the 
transfer function of the sensor. 

 
Fig.7. Two degree of freedom QFT controller structure 
 
QFT control design 
 For the purpose of performance specifications, the 
selected upper and lower closed loop requirements in the 
time domain need to be translated to the frequency domain 
and so used in the controller design [6,7]. 
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(9) Lower bound 

 Controller design method and requirements were the 
same for all three types of motor models. As a result we 
obtain three speed controller transfer functions: 
 Speed controller of the linear model: 

 (10)  
3 2

3 2

1075s +26540s +157600s+5,452

s +19,02s +5,384s
C s   

 Speed controller of the dynamic model using static 
inductances Ls: 

 (11)  
3 2

3 2

3407s +58980s +246100s+41,76

s +34,97s +23,39s
C s   

 Speed controller of the dynamic model using dynamic 
inductances Ld: 

(12)  
3 2

3 2

391,2s +5937s +22050s+47,12

s +61,8s +17,09s
C s   

 
Test system 
 Paper [1] shows that the nearest model to the real motor 
was magnetically nonlinear dynamic model using dynamic 
inductances. Therefore, we performed simulations of all 
three designed controllers on this type of dynamic model. 
 A complete test system is presented in Fig. 8. Input 
references and dynamic models (Fig. 5) were the same, 
only controllers and associated prefilters were different. 

 
Fig.8. Test system 
 
Simulation results 
 Colours in the responses are: 
- Yellow: linear model 
- Blue: dynamic model using static inductances 
- Purple: dynamic model using dynamic inductances 
 
1. Step response from 0 to 1500 RPM with added load 12 
Nm at 1.2 seconds. 
 
 In Fig. 9 red represents the reference value of 
revolutions with a step response in the SWM electric drive 
control. Non-linear dynamic model with included dynamic 
inductances (purple colour) achieves the revolutions value 
the fastest and with the lowest stationary error. This is 
confirmed in Fig. 10 and 11, where time lines of 
corresponding voltages and currents for all three controllers 
are presented. Both Figures show that the variation in the 
voltage and consequently in the current is the lowest in 
case of a limited non-linear dynamic model with included 
dynamic inductances. Consequently this also means lower 
energy consumption (Fig. 12 and 13). 
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Fig.9. Step response with load at 1.2 seconds 
 

0 0.1 0.2 0.25
-400

-200

0

200

400

600

700

t(s)

U
(V

)

 
Fig.10. Time waveforms of voltages at step response 0-1500 rpm 
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Fig.11. Time waveforms of currents 0-1500 rpm 
 

2. Power consumption graph at step response from 0 to 
1500 RPM, without load: 
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Fig.12. Power consumption differences - without load 
 

3. Power consumption graph after step response, added 
load at 1.2 seconds: 
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Fig.13. Power consumption differences - with load 
 

 As we can see, from all the responses the purple curve 
has the lowest value and it is smoother than others. This 
represents the lowest power consumption among all three 
controllers. 
 Additional confirmation of models' applicability is 
obtained by adding current limiter, where only the 
magnetically nonlinear dynamic model using dynamic 
inductances passes the test. 
 
Conclusion 
 Three magnetically different types of SWM dynamic 
models were presented. Magnetically nonlinear dynamic 
model using dynamic inductances has provided the most 
accurate calculated results; therefore it can be used for 
steady state analysis and dynamic operation analysis. 
 For control design the “Quantitative Feedback Theory” 
method was used. Controller design with QFT technique 
leads to a very low order controller (the obtained controller 
is simple, robust and of low order). 
 For all three motor models the comparison of current, 
voltage and power time waveforms were presented. 
Magnetically nonlinear dynamic model with included 
dynamic inductances as parameters had the lowest power 
consumption. 
 The used approach is suitable for controller design to 
optimize the energy/power consumption in an electric 
vehicle. 
 The main focus of future research will be additional 
system energy optimizations, adding different loads and 
disturbances to the nonlinear model, testing all three 
designed controllers on a real SWM and comparison with 
the results presented in this paper. 
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