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Hysteresis in semi-rigid steel joints 
 
 

Abstract. In this paper the dynamic behaviour of a completely rigid steel column with a mass on the top, loaded by exponentially increasing cycling 
force is investigated. The joint at the fixed end of the column is modelled with a semi-rigid rotational spring; its non-linear characteristic is 
theoretically represented by a Preisach hysteresis model. In the solution of the non-linear dynamic equation of the motion the fix-point technique is 
inserted into the time marching iteration. The results are plotted in figures. 
 
Streszczenie. W artykule opisano badania reakcji sztywnej, stalowej kolumny z masą na szczycie, na działanie wzrastającej wykładniczo siły 
skręcającej. W celu zamodelowania zamontowanego na stałe końca kolumny, wykorzystano półsztywną sprężynę wirową, której nieliniowy 
charakter jest określony poprzez model histerezowy Preisacha. W celu rozwiązania równania ruchu, dokonano jego dyskretyzacji. Przedstawiono 
wyniki symulacyjne. (Histereza w półsztywnych połączeniach stalowych). 
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Introduction 

Several engineering research deals with the modelling 
of the non-linear behaviour of systems. The non-linear 
properties of structures can be treated by single-valued or 
multi-valued hysteresis characteristics.  

The more detailed description of the non-linear 
behaviour of structures or materials is the microscopic 
model, where the elementary scale of material is simulated 
from the energetic aspect. In this case the non-linearity of 
material clusters can be analysed by Stoner-Wohlfarth type 
[1], Jiles-Atherton style [2] models. 

The mesoscopic description of the hysteresis behaviour 
with respect to some physical properties can be handled by 
the Preisach type models [3]-[10], which is the most popular 
tool to model the non-linearity of materials and structures. 

The simplest representation of the non-linear 
characteristics is the macroscopic model, where the 
phenomenological description of the physical process is the 
purpose. Several empirical models and analytical 
simulations have been developed [11]-[12] with the different 
level of the Ramberg-Osgood and the Richard-Abbott 
models [13]-[19] for the non-linearity of joints in steel frames 
in mechanical systems.  

To assemble the material from elementary clusters and 
modelling their non-linearity from microscopic aspect can be 
found in [20]. To represent the hysteresis of steel due to the 
stress and strain effect the modified versions of Jiles-
Athertom models can be found in [21], [22], and with loss 
separation under different stresses [23]. There are several 
researches to extend the Preisach type models for the 
simulation of mechanical properties of materials and to 
describe the non-linear behaviour of steel structures [24]-
[26]. 

The purpose of this research is to extend the Preisach 
model for theoretical investigation of semi-rigid joint of steel 
columns and insert the model into the computation of the 
dynamic behaviour of the mechanical system. The 
experimental validation of the results will be evaluated after 
measurements on an actual structure have been carried 
out.  

 
Dynamic model of the mechanical system 

In Pecs, city of Hungary, in the frame of the preparation 
to be the Cultural Capital of Europe in 2010 a bell tower has 
been designed by architects Zoltan Bachman and Balint 
Bachmann [27] to one of the corner of the mosque, with the 
statue of St. Bartholomew. The bell tower has a moving 
telescopic structure hydraulically rising to become a tower 
during the tolling action (Fig. 1).  

Fig. 1. St Bartholomew’s bell tower 

To model the behaviour of the dynamic system first the 
upper part of one column with semi rigid hinge at the joining 
point with non-linear hysteretic characteristic is modelled 
and checked how the hinge behaves during the dynamical 
action. 

The external diameter of the investigated upper part is 
dex=0.282 m, the thickness is 8 mm, the length of the 
column is 12.75 m. The mass of the column m is 
concentrated to the top of the pillar and it is completed with 
the mass of the bell (290 kg) and the fly (40 kg). Under the 
action of the external cycling force and the mass of the 
columns the column has declination angle φ around the 
joining point resulting in deflection u (Fig. 2).  

To model the moment of the electrical motor for forcing 
the bells to toll a concentrated, horizontal directed, 
exponentially increased periodically changing force is acting 
during the tolling process with amplitude F0=1 kN with 
cycling periodicity Tp=0.2 s (Fig. 3)  
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The investigated column itself is considered as a semi 
rigid cantilever with rotational spring at the joining point. The 
behaviour of rotational springs is modelled with hysteresis 
characteristics between the spring moment (P) and the 
declination angle (, H{P}. During the investigations 
three types of characteristics are considered for the 
rotational springs as soft (H1), medium (H2) and hard (H3) 
as it can be seen in Fig. 4. 
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Fig. 2. The column Fig. 3. The cycling load of the column 

Although in mechanical systems the characteristics of 
the spring moment-declination angle is handled, in this case 
the Preisach hysteresis model is applied to model the 
behaviour of the rotation spring, so the inverse hysteresis is 
constructed (Fig. 5). 

Fig. 4. Direct characteristics of rotational spring 

Fig. 5. Invers characteristics of rotational spring 

Considering small declination u~l, (sin~tan~, 
cos~1) the acting bending moment generated by the 
external force and the mass positioned to the top of the 
cantilever produce the rotation and influence the rotation 
spring as 

(2)          ,tGultFtPtI    

where I is the inertia moment of the mass m, I=ml2, P is the 
bending moment acting on the rotational spring, G is the 
gravity force of the mass [29], [30]. 

Taking into account the small declination, the deflection 
can be represented as u=l, the second order non-linear 
differential equation has the form 

(3)           ,ltGltFtPtI    

(4)       ., ttPHt    

 
Numerical treatment 

The above non-linear dynamic problem (3), (4) can be 
solved as it is proved in [31]. For the numerical 
approximation of the above problem the time discretisation 
is evaluated by the double application of the Crank-Nicolson 
iteration schema [32]. The non-linear iteration is realised by 
the fix-point technique [33], [34] to have a contract 
transformation of the direct characteristics 

(5)    RkP FP   , 

where kFP is the fix-point constant to represent the linear 
part of the connection stiffness and R is the residual non-
linearity. Substituting (4) into (3) at a fixed time moment n, 
(tn =ndt) 
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the iteration steps are as follows: 
Step 1, At the new n-th time step the initial value of the 

declination angle is equal to the last value of the 

previous time step, 1 n
i
n  , the initial value of the 

residual part of the hysteresis is equal to the last value 

of the previous time step, 1 n
i
n RR ; 

Step 2, The value of the acting bending moments are 
known from the right side of (5) with respect to the 

iteration of declination i
n ; 

Step 3, With the solution of (6) a new iteration for the 

declination 1i
n  can be determined; 

Step 4, An estimation for the bending moment acting on the 
rotation spring can be determined as 

i
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i
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Step 5, With the hysteresis (4) the remaining non-linear part 
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Step 2. 
 
Results 

The numerical realization of the above theory has been 
developed within a MATLAB code and the hysteresis has 
been inserted into the numerical iteration. For all cases the 
time interval of investigation is 9 s. The cycling time was 
selected as 0.2 s, in one period 20 time steps have been 
investigated; the time discretisation was 0.01 s. Throughout 
the approximation 900 points have been calculated in total. 

The different hysteresis characteristics result in different 
behaviour for the column.  

It is assumed that the hinge at the joining point of the 
column has in order hard (H3), medium (H2) and soft (h1) 
hysteresis characteristic (see Fig. 5). During the time 
interval of acting force the variation of the declination angle 
versus the spring moment, the arising hysteresis during the 
motion is plotted in Fig. 6, while the deflection u of the end 
point of the cantilever can be seen in Fig. 7. 
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Fig. 6. The hysteresis described by the behaviour of the rotation
spring with hard characteristics at the joining point 

Fig. 7. The deflection at the joining point generated by the
rotational spring of hard characteristics 

For the rotational spring with medium characteristics 
(H2) the arising hysteresis and the time variation of the 
deflection is plotted in Fig. 8 and Fig. 9. 

Fig. 8. The hysteresis described by the behaviour of the rotational
spring with medium characteristics at the joining point 

Fig. 9. The deflection at the joining point generated by the 
rotational spring of medium characteristics 

Finally the behaviour of the soft rotation spring (H1) is 
investigated. The behaviour of soft spring can be seen in 
Fig. 10, while the deflection of the end point of the 
cantilever is plotted in Fig. 11. 

Fig. 10. The hysteresis descried by the behaviour of the rotational 
spring with soft characteristics at the joining point 

Fig. 11. The deflection at the joining point generated by the 
rotational spring of hard characteristics 
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From the figures it can be seen, that after the initial 
transient behaviour, the motion of the system can be 
stabilised during the tolling action. The small offset of the 
hysteresis curves originates from the mass of the column, 
the bell and the fly positioned at the top of the cantilever. 
The bending moment produced by the gravity force of the 
mass acts as a constant load on the system, which is added 
to the cycling load of the operating external force.  
 From the figures it can be seen as well, that by changing 
the property of the rotational spring (H3, H2, H1) the self-
oscillation of the system is changing. Under hard property of 
the rotational spring (H3) the self oscillation time is 2.2 s, for 
medium property of the rotational spring this self oscillation 
time became 2.8 s, while for soft rotational spring this time 
period increases up to 3.6 s.  
 
Conclusion 

In the research the behaviour of the upper part of one of 
the columns of a bell tower has been investigated. The semi 
rigid joint point of the cantilever has been modelled by 
rotational spring of different properties of hysteresis. The 
mass of the column, the bell and the fly has been 
concentrated to the completely rigid top of the cantilever. 
The tolling process is modelled by a cycling load. The non-
linear equation of motion has been solved by the double 
application of the Crank-Nicolson schema; the iteration 
along the non-linear hysteresis characteristics is evaluated 
by the fix-point technique.  

The numerical simulation has been evaluated under 
theoretically assumed soft, medium and hard hysteresis 
property of the hinge at joining point. The results prove, that 
after an initial transient behaviour the motion of the system 
is stabilised.  
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