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Steady-state analysis of synchronous machines 
loaded by an angle depended torque 

 
 

Streszczenie, Reakcja maszyny synchronicznej na moment obciążenia zależny od kąta obrotu jest ważna dla napędów tłokowych. W celu jej 
określenia należy równania elektryczne maszyny rozwiązywać łącznie z równaniem ruchu, co prowadzi do nieliniowego układu równań 
różniczkowych. Najczęściej do ich rozwiązywania stosuje się procedury numeryczne, a stan ustalony otrzymuje się po zaniku procesów 
przejściowych. W pracy, do wyznaczenia takiego stanu ustalonego zastosowano metodę bilansu harmonicznych. Wówczas rozwiązanie przewiduje 
się w postaci szeregu Fouriera. Bilans harmonicznych prowadzi do nieskończenie wielu nieliniowych równań algebraicznych wiążących 
współczynniki Fouriera tych szeregów. W celu rozwiązania tego układu, ograniczonego do wymiarów skończonych, użyto algorytmu Newtona-
Raphsona. W rezultacie obliczono bezpośrednio widma prądów maszyny oraz widma zmienności kąta mocy i wahań prędkości obrotowej. (Analiza 
pracy maszyny synchronicznej przy zaburzeniach momentu mechanicznego zależnych od kąta obrotu)  
 
Abstract, Steady-state response of a synchronous machine to the torque with angle depended pulsating component is important for the piston type 
drives. To find such response, electrical equations have to be solved together with the equation of motion, what leads to nonlinear differential 
equation set. The numerical integration is often used, and steady-states are obtained when transients disappear. In this paper the method of 
harmonic balance is used for determining such steady-states. The solution is predicted in the form of the Fourier series, and harmonic balance 
method leads to an infinite set of nonlinear algebraic equations for coefficients of that series. The Newton–Raphson scheme is used to solve these 
equations when limited to the finite dimensions. As a result the Fourier spectra of all machine currents, as well as of the rotor speed and variation of 
the power angle, are directly determined.  
 
Słowa kluczowe: maszyna synchroniczna, stan ustalony, analiza spektralna, metoda bilansu harmonicznych. 
Keywords: synchronous machine, steady-state, spectral analysis, harmonic balance method. 
 
Introduction 

Synchronous machines loaded by piston compressors or 
driven by Diesel engines work at mechanical torque, which 
contains an alternating component. The torque oscillations 
appear due to the pulsation character of forces acting on the 
pistons, and are related to the angular position of the 
machine shaft. It follows that synchronous machine is loaded 
by an angle depended torque, which generates the speed 
ripples, even if the machine is running synchronously. 
Electromechanical interactions in the machine generate 
additional alternating components in the currents of all 
windings. In order to determine all those additional effects in 
mechanical and electrical variables, it is necessary to solve 
full set of machine equations, which is nonlinear. For 
synchronous machine it is, at least, a set of six differential 
equations. 

It is a difficult problem to find directly the steady-state 
solution for those equations. That is why the equations are 
usually solved numerically and steady-state is achieved after 
the transients. Simplified approach relies on linearization of 
equations, and steady state analysis is provided similar to 
linear systems [1][2][4]. In [3] a methodology is presented for 
direct determination of steady-state solution for nonlinear 
differential equations when periodic solution can be 
predicted. In [6] it has been adapted to the equations of 
synchronous machines forced by the angle depended torque. 
The harmonic balance is the base of that methodology [5]. 

This paper presents the harmonic balance approach to 
determine the steady-states of a synchronous motor loaded 
by mechanical torque with two components: a constant one 
and a mono-harmonic angle depended component. It has 
been assumed that a motor under such load is running 
synchronously and the angle dependent component 
generates only additional components in motor currents as 
well as in the rotor speed and the power angle. Further, it has 
been assumed that a motor is described by commonly used 
‘d-q’ model of synchronous machines and the stator windings 
are supplied by the balanced set of AC voltages and the field 
winding from DC source. Under those assumptions the 
harmonic balance method can be used for direct steady-state 
prediction. 

Harmonic balance method for equations of 
synchronous motor 

To apply harmonic balance method, the equations of 
synchronous machine have been described in coordinates 
(0,+,–) defined as  
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ea   ) both for stator currents ( )()( titx nn  ) and 

voltages ( )()( tutx nn  ). Balanced stator voltages with 

pulsation sΩ  are represented for those coordinates by 

constant values Uuu 2
3  . The machine equations, 

using commonly accepted notation, takes the form  
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Considering a steady-state performance at the 
synchronous rotor speed with the angle depended torque 
periodically repeated π)2mm   ()( TT , all currents can 

be seen as the periodic time functions, except the rotation 
angle )(t  because it is permanently increasing. 

Introducing the angle deviation )(t  with respect to 
linearly growing term due to the synchronous speed 

tp)Ωs /( , where ‘p’ is a pole-pair number of a machine, the 

rotational angle is given by the formula 
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)(/()( ttt   p)Ωs . Using the angle deviation as the 

variable, the motion equation can be rewritten in the form 
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Now, the angle deviation )(t  can be described as 
periodic at the steady-state.  

The equations (1a) and (2) can be combined to the one 
nonlinear set in the form 
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for the vector  T'
Q
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f   iiiiix  of unknown 

functions, which can be predicted in the form of the Fourier 
series 
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with the period xT . Also, the vectors  0F , 1F  and 2F  can 

be expressed as the Fourier series 
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because their elements are nonlinear functions of the 
unknown functions in the vector x . 

The period Tx of predicted solution can be found from 
the following interpretation of physical phenomena. 
Generally, the angle dependent load torque can be 
expanded into the Fourier series  
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and in the steady-state it should repeated with the period 
Tx, i.e. )()( xmm T tTtT . This is possible when 
 

(6)                       sx TpT                           
 

where sT  is the period of supply voltages. Individual torque 

harmonics are repeated with the periods sx, Tp/T  )( kk . 

Harmonic balance method compares the Fourier series 
(5) on both sides of equations (3). It leads to an infinite set 
of algebraic equations (7) with respect to the unknown 
coefficients kX  of the series (4), The equation set (7) is 

nonlinear because the Fourier coefficients kn,F  of the series 

(5) in those equations depend nonlinearly on the 
coefficients kX . 
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where EE  xx f2πΩ  and E is a unit matrix. Those 

equations can be written in a simple form  
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using so called vector representations of the Fourier series 
[5].  

Such infinite and nonlinear equation set can be solved 
numerically using Newton-Raphson algorithm when limiting 
its dimensions to the finite one [3][6] 
 

(9)               1

1n n n n


   x x J x F x  

where  
 

(10a)          2

2 1 0j      F x Ω F x Ω F x F x      

(10b)                           



F x

J x
x

                               

 
The crucial point of this algorithm is the creation the Jacobi 
matrix (10b). This procedure is described in detail in [3][6]. 
 
Results of the numerical tests 

The numerical algorithm has been implemented using 
the commercial MATLAB package and its convergence has 
been confirmed [6]. 

Calculations has been carried out for a motor with rated 
data PN =1,25MW, UN,=6kV, n0 =750rpm and cos=0,9. It 
has been assumed that motor is supplied by a balanced 
three phase voltages and loaded by a torque given by the 
formula  
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Basing on the vector  T'
Q

'
D

'
f   iiiiix , the 

Fourier spectra of the following quantities have been 
calculated: 
- the stator current of the phase ‘a’ 
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- rotor currents, i.e. the field winding current and the 

equivalent starting cage currents 
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- the rotor speed 
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- the power angle 
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Figures 1 – 6 show the Fourier spectra of the variables 

listed above that characterize the steady-state. The 
magnitudes of the first greatest harmonics are only 



160                                                                           PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 2b/2013 

presented. The decibel calibration of vertical axes is used 
because of the disproportions between magnitudes of 
components. It should be mentioned that presented spectra 
contain harmonics with strictly determined frequencies, 
which do not depend on the accuracy of calculations. Those 
frequencies depend on properties of the loaded torque, and 
for the considered case they differ by pfs2 , i.e. by 25Hz. 

So, a qualitative analysis of the spectra is uniquely done. 
 

 
Fig. 1. Fourier spectrum of stator current of the phase ‘a’ 
 

Fig.1 shows the Fourier spectrum of the stator current of 
the phase ‘a’. It contains the fundamental component 0I  

with supply frequency 50Hz and additional components 
shifted successively by 25Hz. According the formula given 
in Fig.1 those components have the frequencies of 

Hz)2550(  k , i.e. for 3k  they take the values  
 

(16)     Hz)125, ,100 75, 50, 5,2 0, 25,,(        

 
The constant component cannot arise in the stator 

current due to the magnetic coupling and it disappears in 
calculated spectrum, confirming the correctness of the 
analysis. Negative frequencies in the spectrum indicate that 
a set of stator currents with such frequencies has oposite 
sequence. So, the stator currents have both positive and 
negative sequences for each frequency. It means that stator 
currents are asymmetrical and each one has different rms 
value. However, the magnitudes of additional components 
are rather small and decrease very fast with the frequency. 
The 75Hz component is approximately 60dB less than the 
50Hz component. The currents of the opposite sequence 
for 50Hz, related to the component with frequency -50Hz, 
are very low. Then, the stator currents are practically 
symmetrical.  
 

 
Fig. 2. Fourier spectrum of the field current 
 

The Fourier spectrum of the field winding current is 
presented in Fig.2. It contains constant component related 
to the DC voltage supplying that winding and components 
generated by pulsating component of the loaded torque. 
Those components have frequencies of 25Hz, 50Hz  75Hz, 
etc. Their magnitudes decrease even faster than in the 
stator currents. Two successive harmonics differ 
approximately by 70dB. 

 

 
 
Fig. 3. Fourier spectrum of the ‘d’ equivalent damping cage current  
 

 
 
Fig. 4. Fourier spectrum of the ‘q’ equivalent damping cage  
 

The algorithm presented in this paper solves all 
equations of a synchronous machine, therefore the unreal 
currents of the equivalent damping cages in ‘d’ and ‘q’ axes 
are calculated as well. Despite being not observable, they 
allow to determine power losses in the starting or damping 
cage of the machine. Fig.3 and Fig.4 show the Fourier 
spectra of those currents. The constant components do not 
appear in the spectra because at the synchronously running 
machine those currents are equal to zero. The damping 
cage currents have the same features as the additional 
components in the field winding. Their Fourier spectrum 
contain the frequencies of 25Hz, 50Hz  75Hz, etc., and the 
successive harmonics differ approximately only by 70dB. 

One of the variables calculated by the Newton-Raphson 
algorithm is the angle deviation )(t , which is periodic. It 
allows determining the power angle changes at considered 
steady-state. In Fig.5 the Fourier spectrum of the power 
angle is presented. The constant value follows from the 
mean value of the loaded torque. The deviations have 
harmonics with frequencies of 25Hz, 50Hz  75Hz, etc. Their 
magnitudes decrease also very fast, and the two 
successive harmonics differ approximately by 70dB. It 
should be noted that even if the torque has only one 
harmonic, the machine responds with many harmonics due 
to the nonlinearity of full set of equations. 

 

 
Fig. 5. Fourier spectrum of the power angle 
 

The alternating component in the torque generates 
perturbations of the angular velocity, which can be 
calculated as the derivatives of the deviations of is the 
angle deviation )(t . Fig. 6 shows the Fourier spectrum of 
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the angular rotor speed. The constant value has been 
added because perturbations affect the steady-state at the 
synchronous speed, what has been taken into account by 
introducing the angle deviation as the difference between 
the real value of the rotational angle and linearly growing 
part due to the synchronous speed ttt  p)Ωs /()()(  . 

The additional components in the Fourier spectrum of rotor 
speed have the same frequencies as the power angle 
deviation, i.e. 25Hz, 50Hz  75Hz, etc. That spectrum is 
more sensitive compared to the spectrum of the power 
angle, and the successive harmonics differ approximately 
only by 60dB. 
 

 
 
Fig. 6. Fourier spectrum of the rotor speed 
 
Conclusions 

This paper describes the algorithm which allows to 
directly determine a steady-state of a synchronous machine 
loaded by an angle dependent torque. Application of that 
algorithm is illustrated by a case study for synchronously 
running 4-pole motor when the constant torque is disturbed 

by a component repeated twice per revolution. It has been 
confirmed that the Fourier spectra of all important quantities 
characterizing the steady-state of synchronous motor can 
be both qualitatively predicted and quantitatively determined 
by solving the set of nonlinear algebraic equations.  
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