
PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 2b/2013 257

Onur ATAR1, Murat H. SAZLI2, Hakkı Gökhan İLK2

TUBITAK Uzay(1), Ankara University(2)

FPGA Implementation of Turbo Decoders Using the BCJR
Algorithm

Abstract. The most challenging design issue for turbo codes, which is a successful channel coding method to approach the channel capacity limit, is
the design of the iterative decoders which perform calculations for all possible states of the encoders. BCJR (MAP) algorithm, which is used for turbo
decoders, embodies complex mathematical operations such as division, exponential and logarithm calculations. Therefore, BCJR algorithm was
avoided and the sub-optimal derivatives of this algorithm such as Log-MAP and Max-Log-MAP were preferred for turbo decoder implementations.
BCJR algorithm was reformulated and wrapped into a suitable structure for FPGA implementations in previous works. Previously reformulated BCJR
algorithm was implemented and discussed in this paper for several design issues. Implemented system is verified through simulations. It is observed
that the BER performance of the proposed algorithm is better than the Log-MAP algorithm as expected. Despite its superior BER performance, the
proposed BCJR turbo decoder has a clear throughput disadvantage. For this reason the decoder has been duplicated. This is done by simply
inserting another BCJR turbo decoder on the same FPGA platform, enabling two operating decoders at the same time interval. This simple yet
effective modification yields almost doubled throughput results compared to the single BCJR decoder.

Streszczenie. W artykule przedstawiono koncepcję budowy turbo dekodera opartego na algorytmie BCJR, zaimplementowanego w układzie FPGA.
W celu ułatwienia programowania, zastosowano specjalną strukturę opracowanej metody. Ze względu na ograniczenia przepustowości dekodera,
zastosowano dwa takie algorytmy, działające na platformie sterującej równolegle. Pozwoliło to na prawie dwukrotne zwiększenie przepustowości.
(Implementacja turbo-dekodera na platformie FPGA z wykorzystaniem algorytmu BCJR).

Keywords: Duplicated decoder, MAP algorithm, Turbo codes, Turbo coding.
Słowa kluczowe: podwójny dekoder, MAP, turbo-kody, turbo-kodowanie.

Introduction
Shannon’s 1948 paper entitled “A Mathematical Theory

of Communication” [1] has been considered as the birth of a
new field, “error control coding”. In that paper Shannon
defined the concept of “channel capacity”. He then showed
that there exist error control codes that can yield arbitrarily
low errors at the receiver output, so long as the
transmission rate through the channel is less than the
channel capacity. Although he showed the existence of
such codes, he did not specify how to construct them.

Even though many efficient coding and decoding
schemes have been developed following Shannon, not until
the invention of the state-of-the-art turbo codes in 1993
have we been able to approach to the channel capacity limit
within just a few tenths of a dB. In other words, turbo codes
have closed the significant gap between the coding gains
so far achieved using the conventional coding and decoding
schemes, and the channel capacity limit.

In order to implement an efficient turbo decoder, a
suitable decoding algorithm has to be chosen. Turbo codes
have been originally implemented with BCJR (Bahl, Cocke,
Jelinek, Raviv) [2] algorithm. However, this algorithm
performs complex mathematical operations such as
multiplication, division and logarithmic calculations.
Therefore, engineers have avoided implementing this
complex algorithm and preferred the sub-optimal derivatives
of the BCJR (MAP) algorithm such as the Log-MAP and the
Max-Log-MAP algorithms which are much simpler to
implement but yield worse BER performances [3].

With the advent of the technology, it is possible to
implement the BCJR algorithm on a single FPGA. The
details of this approach and detailed information about turbo
encoders and decoders are given in [4].

The paper is organized as follows. In the next section,
reformulation of the BCJR algorithm which is necessary for
implementation using FPGA is presented. Then, in Section
III, implementation details are given in terms of BER
performance, total throughput and multiple turbo decoders,
that is duplicating the BCJR turbo decoder within one FPGA
platform. Finally, in Section IV conclusions are drawn.

Reformulation of the BCJR algorithm
 In this section we will reformulate the BCJR algorithm
via some matrix manipulations [5, 6]. In the following we will

consider a recursive convolutional encoder with a constraint
length K and code memory v = K – 1. There are 2v states of
this encoder. We also suppose that BPSK modulation is
used, i.e. bit one is mapped to +1, and bit zero is mapped to
-1.

A. Calculation of the Forward Metrics (Alpha Coefficients)

Let us begin with the recursive equation to obtain the “α
coefficients” of the BCJR algorithm according to eq. 1.

(1)

1

1
' 1

1

1
' 1

(') (, ',)
()

(') (, ',)

i

k i k
m i

k i

k i k
m m i

m R m m
m

m R m m

where m = 0, 1, 2, …, M, is the index of the states with M =
2v – 1.

After some derivations defined in [5] and [6], the
reformulation of this recursive equation is turned into an
implementable structure of the alpha calculator which is
given in Figure 1.

Γk

Γk

Ak

Ak

A p
k Ak1Ak

Fig.1. The structure of the alpha calculator

B. Calculation of the Backward Metrics (Beta Coefficients)

As given in eq. 2, a similar procedure was followed to
formulate the “β coefficients” of the BCJR algorithm in
matrix notation in [5] and [6].

(2)

1

1 1 1
' 1

1

1 1
' 1

(') (, , ')
()

() (, , ')

i

k k
m i

k i

k k
m m i

m R m m
m

m R m m

258 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 2b/2013

After some derivations defined in [5] and [6], the
reformulation of this recursive equation is turned into an
implementable structure of the beta calculator which is
given in Figure 2.

1)(Γ T
k

B p
k Bk1Bk

Fig.2. The structure of the beta calculator

C. Calculation of the Logarithmic Likelihood Ratios (LLRs)
Now, we will show how we can compute the logarithm of

the likelihood ratios (LLR) associated with each bit dk using

the previously computedA , B andΓ matrices. LLR
associated with each bit dk is calculated as given in Eq. 3.

(3)

1 1
'

1 1
'

(, ',) (') ()
() ln

(, ',) (') ()

k k k
m m

k
k k k

m m

R m m m m
d

R m m m m

After some derivations defined in [5] and [6], the
reformulation of this recursive equation is turned into an
implementable structure of the LLR calculator which is
given in Figure 3.

()A T
k

()A T
k

kp

kn

Bk

kl

Fig.3. The structure of the LLR calculator

FPGA Implementation of Turbo Decoders Using BCJR
Algorithm
 Turbo decoders are highly configurable systems. Some
of the configuration parameters are chosen by the design
engineer, some of them are defined by the 3GPP standard
[7]. The parameters used in this work and their values are
given in Table 1.

Table 1. Design parameters
Parameter Value
Block Length 128-4096
of RSC Encoders 2
Constraint Length of RSC Encoders 4
Generator matrix of RSC Encoders G={7,5}(oktal)
Code Rate R=1/3
Code Puncturing None
Decoding Algorithm BCJR (MAP)
Iteration # 1-20

A. General Hardware Structure of the System
General hardware structure of the implemented system

is given in Figure 4. The received data stream

1 2(, ,)k k k kx y yR
 is handled by the “input handling system”

in order to be stored and provided to the appropriate
decoders.

As indicated before, reformulated BCJR algorithm is
used in component decoders [5]. The hardware structure of
this algorithm is given in Figure 5.

Coefficients used by the BCJR algorithm and the noisy
received data stream are defined as real numbers.
Therefore, these numbers must be represented as “fixed-
point” on hardware. Nine-bit numbers are used for both the
received data stream and the internal coefficients. Figure 6
illustrates the number representation.

ˆ
kd

1kz2kz

2ky

1ky
kx

1 2(, ,)k k k kx y yR

2kz
2ky
kx

Fig.4. General hardware structure of the system

kx ky kz

kw

Γk

Γk

Αk

Αk

()Sum k

1Γk

(1)Sum k Αk
 Αk

Bk

Γk

Fig.5. Hardware structure of the component decoders

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 2b/2013 259

Fig.6. Number representation

B. Gamma Calculation Unit
The state transition metrics (gamma coefficients) is

calculated as given in eq. 4.

(4)

2

exp(/ 2)1
(, ',) exp(/ 2)

2 1 exp()
k

i k k
k

z
R m m iz

z

1. (| , ')k k kq d i S m S m

2 2
2

1
.exp{ [() ()]}

2 k k kx i y Y

Eq. 4 can also be considered as product of three terms.

The
2

exp(/ 2)1
exp(/ 2)

2 1 exp()
k

k
k

z
iz

z term is the first term, the

1(| , ')k k kq d i S m S m
 term is the second term and the

2 2
2

1
exp{ [() ()]}

2 k k kx i y Y

term is the third term of this

product. These three terms are multiplied via the digital
elements on hardware. Constants and exponential
expressions in these terms are not calculated but read from

look-up tables which results in reduced usage of hardware
elements (except block memories).
C. Alpha, Beta and LLR Calculation Units

These units implement not only multiplication and
addition operations but also division operation which runs
slowly on hardware despite the high speed modern FPGAs.
Therefore, the division operation is implemented via look-up
tables.

Logarithmic calculation is the only complex calculation
implemented in the LLR unit. Therefore, it is also
implemented via look-up tables similar to alpha and beta
calculation units.

D. BER Performance of the BCJR Turbo Decoder
 BCJR turbo decoder implemented at this work yields
better BER performance than the Xilinx Log-MAP turbo
decoder [8]. BER performance comparison between these
two turbo decoders is given in Table 2.

E. Total Throughput Performance of the BCJR Turbo
Decoder
As indicated before, turbo decoding operation is an

iterative operation. For every data block, more than one
iteration is completed by the decoder. Thus, turbo decoders
yield better BER performance. However, these iterations
decrease the total throughput of the decoder. Total
throughput performance comparison between the BCJR
and the Log-MAP turbo decoders is given in Table 3.

F. Duplicating the BCJR turbo decoder
Despite its superior BER performance, our proposed

BCJR turbo decoder has a clear throughput disadvantage.
Therefore, for high throughput requiring applications, we
can duplicate our decoder. This is done by simply inserting
another BCJR turbo decoder on the same FPGA platform.
Thus, we can have two operating decoders at the same
time interval.

As given in Table 4, this simple retouch yields almost
doubled throughput results compared to the single BCJR
decoder. It is clear that multiple decoders (as many as
needed) can be inserted to the same platform and provided
as a monolithic solution at reasonable costs.

Table 2. BER performance comparison of R=1/3 BCJR turbo decoder (using single structure as explained in [4]) and the Log-MAP turbo
decoder after 5 iterations

Block Length 512 Bits 1024 Bits 2048 Bits
SNR BCJR Log-MAP BCJR Log-MAP BCJR Log-MAP

SNR = 0.5 dB 3.10-3 4.10-2 4.10-4 3.10-2 10-4 2.10-2
SNR = 1 dB 8.10-4 10-2 2.10-5 2.10-3 6.10-6 6.10-4
SNR = 1.5 dB 2.10-5 10-3 10-6 4.10-5 4.10-7 2.10-6
SNR = 2 dB 2.10-6 2.10-4 <10-7 10-6 <10-7 10-7

Table 3. Total throughput performance comparison of R=1/3 BCJR turbo decoder (using single structure as explained in [4]) and the Log-
MAP turbo decoder at 139 MHz and 349 MHz clock frequency respectively (Mbps)

Block Length 512 Bits 1024 Bits 2048 Bits
Iteration # BCJR Log-MAP BCJR Log-MAP BCJR Log-MAP
Iteration = 3 7,87 32,93 7,88 35,58 7,90 37,96
Iteration = 5 4,69 20,68 4,72 22,42 4,74 24,00
Iteration = 7 3,35 15,08 3,36 16,37 3,38 17,54
Iteration = 9 2,61 11,86 2,62 12,89 2,63 13,82

Table 4. Total throughput performance comparison of R=1/3 BCJR turbo decoder (using duplicated structure as explained in Section F.
Duplicating the BCJR turbo decoder) and the Log-MAP turbo decoder at 139 MHz and 349 MHz clock frequency respectively (Mbps)

Block Length 512 Bits 1024 Bits 2048 Bits
Iteration # BCJR Log-MAP BCJR Log-MAP BCJR Log-MAP
Iteration = 3 15,59 32,93 15,61 35,58 15,65 37,96
Iteration = 5 9,29 20,68 9,35 22,42 9,39 24,00
Iteration = 7 6,64 15,08 6,66 16,37 6,70 17,54
Iteration = 9 5,17 11,86 5,19 12,89 5,21 13,82

260 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 2b/2013

Implementation Report of the BCJR Turbo Decoder
 BCJR algorithm is a computationally complex algorithm.
Implementing complex mathematical operations such as
multiplication and division significantly increases the usage
of hardware elements. Therefore, BCJR algorithm uses
more hardware elements and runs slower on hardware due
to its complex mathematical operations. The impact of this
disadvantage is reduced by using look-up table for complex
operations except multiplication. Implementation reports of
the BCJR turbo decoder and the Xilinx Log-MAP turbo
decoder which operate on exactly the same platform are
given in Table 5 and 6 respectively.

Table 5. Implementation report of the R=1/3 rate BCJR turbo
decoder

Preferences
Xilinx FPGA XC6VLX75T
LUT/FF Pairs 2264
Slice LUT 36254
Slice Register 2404
Blok RAM (36k) 142
Blok RAM (18k) 0
DSP Blocks 0
Speed Grade -1 -3
Maximum Clock Frequency 130 MHz 139 MHz

Table 6. Implementation report of the R=1/3 rate Log-MAP turbo
decoder

Preferences
Xilinx FPGA XC6VLX75T
LUT/FF Pairs 3765
Slice LUT 3712
Slice Register 4062
Blok RAM (36k) 6
Blok RAM (18k) 7
DSP Blocks 0
Speed Grade -1 -3
Maximum Clock Frequency 285 MHz 349 MHz

Conclusion

The turbo decoding structure based on a previous work
[6] is implemented in this work. As indicated in the
introduction section, the BCJR turbo decoder is compared
with the Xilinx Log-MAP turbo decoder [8]. It is observed
that the BCJR turbo decoder yields a better BER
performance than the Xilinx Log-MAP turbo decoder as
expected.

In spite of its superior BER performance,
implementation of the BCJR algorithm has been avoided
because of its complexity considering the past VLSI
technology. However, modern VLSI technology allows us to
implement this algorithm at reasonable costs. The
prospective application areas of our proposed
implementation are:
 Applications that require low BER with a
disclaimed throughput performance. Despite its superior

BER performance, the proposed BCJR turbo decoder has a
clear throughput disadvantage. For this reason the decoder
has been duplicated. This is done by simply inserting
another BCJR turbo decoder on the same FPGA platform,
enabling two operating decoders at the same time interval.
This simple yet effective modification yields almost doubled
throughput results compared to the single BCJR decoder.
This modification leads to the fact that multiple decoders (as
many as needed) can be inserted to the same platform and
provided a monolithic solution at reasonable costs.
 Power constraint applications where the desired
BER is claimed at low SNR which means low power
consumption.
 Applications where both throughput and BER are
important design issues. In such a case the proposed
approach can be used in parallel by using multiple turbo
decoding engine which can provide very high throughput at
an already provided low BER. However, this cannot be
achieved by Xilinx Log-MAP turbo decoder approach.

REFERENCES
[1] Shannon, C. E., “A Mathematical Theory of Communications”,

Bell System Technical Journal, Vol. 27, pp.379-423, 623-656,
1948.

[2] Bahl, L. R., Cocke, J., Jelinek, F., Raviv, J., “Optimal
Decoding of Linear Codes for Minimizing The Symbol Error
Rate”, IEEE Transactions on Information Theory, Vol. 20, pp.
284-287, 1974.

[3] Robertson, P., Hoeher P., “Optimal and Sub-Optimal
Maximum a Posteriori Algorithms Suitable for Turbo Decoding”,
European Transactions on Telecommunications, Vol. 8, pp.
119-125, 1997.

[4] Atar, O., Sazlı, M.H., İlk, H.G., “FPGA Implementation of
Turbo Decoders”, KTTO 2011 11th International Conference
on Knowledge in Telecommunication Technologies and Optics,
pp. 103-108, Szczyrk, Poland, June 22-24 2011.

[5] Sazlı, M., H., “Neural Network Implementation of BCJR
Algorithm Based on Reformulation Using Matrix Algebra”, IEEE
International Symposium on Signal Processing and Information
Technology, pp. 832-837, 2005.

[6] Sazlı, M., H., “Neural Network Implementation of BCJR
Algorithm”, Digital Signal Processing, Elsevier, Vol 17; pp. 353-
359, 2007.

[7] 3GPP, “3GPP Technical Specification”, http://www.3gpp.org,
2010.

[8] Xilinx, Inc., “3GPP Turbo Decoder v4.0 Product Specification”,
Technical Journal, http://www.xilinx.com, 2009.

Authors: Onur ATAR, TUBITAK Tuzay, The Scientific and
Technological Research Council of Turkey, Space Technologies
Research Institute, 06100 Ankara, Turkey, E-mail:
onur.atar@uzay.tubitak.gov.tr; Assist. Prof. Dr. Murat H. SAZLI,
Prof. Dr. Hakkı Gökhan İLK, Ankara University, Electronics Eng.
Dept., Dögol Caddesi, 06100 Tandogan, Ankara, Turkey, E-mail:
sazli@eng.ankara.edu.tr, ilk@eng.ankara.edu.tr.

