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Problems of modeling an electrical arc with variable  
geometric dimensions  

 
 

Abstract. Problems with representing power dissipation in simple, dynamic arc models with variable plasma column length have been described. 
Combined models (serial and parallel-hybrid) have also been presented that can be applied in wide range of currents. Then the analysis have been 
extended to generalized models with variable geometric sizes, in which energy dissipation is proportional to plasma area or volume. Problems with 
the choice of weight function and attenuation coefficient in hybrid models have been described. Results of processes simulation in circuit with 
controlled arc have been presented. 
  
Streszczenie. Opisano problemy odwzorowania mocy dyssypacji w prostych modelach dynamicznych łuku o zmiennej długości kolumny plazmowej. 
Przedstawiono także modele kombinowane (szeregowy i równoległy-hybrydowy), mogące mieć zastosowanie w szerokim zakresie zmian prądu. 
Następnie rozszerzono tę analizę na uogólnione modele o zmiennych rozmiarach geometrycznych łuku, w których dyssypacja energii jest 
proporcjonalna do powierzchni lub objętości plazmy. Opisano problemy wyboru funkcji wagowej i współczynnika tłumienia w modelach 
hybrydowych. Zamieszczono wyniki symulacji procesów w obwodzie z łukiem sterowanym. (Zagadnienia modelowania łuku elektrycznego o 
zmiennych rozmiarach geometrycznych).  
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Słowa kluczowe: łuk elektryczny, model Bergera, model Kułakowa, model Woronina, model Sawickiego, model hybrydowy Woronina-
Sawickiego. 
 
 
Introduction  

An arc column of variable size is a frequent physical 
phenomenon occurring in a number of electrotechnological 
devices. It is caused by various kinds of external 
interference or by the functioning of control systems [1]. Its 
influence on the electrical arc dynamics is often disregarded 
due to high inertia of mechanical systems as compared to 
relaxation times of plasma processes. In the case of 
modeling switching apparatus or devices with 
electromagnetic effect on the arc column, it is necessary to 
take into consideration the arc length and diameter variation 
in time. Besides, it is essential to know how the arc 
parameters and characteristics change even during slow 
controlling of the arc power. The modeling of such arcs has 
been described in a number of publications [2-9] and the 
results obtained in these studies will be restated with 
greater precision in order to reduce discrepancies between 
them and the results of experiments, especially in the range 
of very weak currents.  
 
Representing the energy dissipation in variable-length 
arc models  

Changing the arc length is the most popular way to 
influence the power and stability of the arc discharge. The 
effects obtained depend, among other things, on the power 
supply characteristics and other factors affecting the plasma 
channel diameter.  

Popular models of the nonstationary electric arc, such as 
Mayr’s model, or Cassie’s model treat the plasma channel 
as cylindrical, from which energy is dissipated by 
conduction, or convection. In Cassie’s model the power 
dissipated by convection is variable  
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Since the voltage on the arc increases with the increase in 
the arc length l, the following formula has been proposed in 
[11] to account for the square voltage component in Cassie-
Berger’s model  
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where the parameter a [V2/m] is almost constant within the 
wide range of current i variation. The power  dtdlpv /  

needed for producing an additional plasma volume is 
defined as  
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where b2  0 if dl/dt < 0 due to arc dissipativity. The arc 
equation modified by Berger with a variable Cassie voltage 
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where g – plasma column conductance; l – arc length; C - 
time constant of the model; ucol – voltage drop at the arc 
column.  

When creating some dynamic arc models it is convenient 
to adopt the static characteristic Pstat(I) [10], which is easy to 
obtain experimentally, when the following simple formula is 
employed  
 

(5)       IlIEIlIUlIP statstatstat  ,,  

 

In the classical version of Mayr’s model it is assumed that 
Pdis(t) = PM = const. For larger currents this condition does 
not hold, in which case Cassie’s model is applied [7, 11]. 
Since the heat dissipation processes react slowly to 
external interference, it is possible to assume, that the 
power loss is mainly determined by the static chracteristics 
[7], Pdis(t)  Pstat(i(t)) . 
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Kulakov suggested a modification of Mayr’s model and 
Shellhase’s model [10], employing the static characteristics 
by allowing for the arc length variation. The I-order model in 
the conductance form is [4] 
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where i – arc current; Estat(i) – static characteristic of the 
electric field intensity; Ms – time constant of the model.  

Connecting in a series two non-linear conductances gC 
and gM, corresponding respectively to Cassie-Berger’s 
model and to the Kulakov’s model, makes it possible to 
obtain an arc model analogous to Habedank’s one [3, 8] 
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where EMstat(i) – is a virtual static characteristic of the 
electric field intensity (      MCcstatMstat gggiEiE  / ).  

The hybrid model of the arc column allowing for its length 
variation combines models (4) and (6) by means of a weight 
function (i) and becomes [3, 8] 
 

(10) 
    

 

     
dt

dl

l
i

iElg

i
i

dt

dl
p

g
lu

u
i

idt

dg

g

Mstat

vC

col

1
1

 
1

1
11

2

2




































  

 

where  igui colM  .  

It has to be noted that the first serial models were 
created in order to simulate long high-voltage free arcs in 
power devices. Such arcs are typically fed from regular 
voltage sources. The parallel models, on the other hand, 
are used for simulating processes in electrotechnological 
devices with shorter, low-voltage arcs, which are either free 
or stabilized. Such arcs are fed from current sources, which 
can be even perfect within a limited voltage range.  
 
Representing the power dissipation in generalized 
variable-size arc models  

 
Voronin’s arc model takes into account the external 

influence on the cylindrical arc length and diameter. It is 
necessary to make a number of assumptions [5, 12] to 
create the model, which is based on the simplified equation 

of the arc heat balance. It is therefore assumed that the 
dissipated power is proportional to the arc lateral surface  
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The arc model obtained is one with variable geometrical 
parameters S(t) and l(t) of the arc. It takes the general 
conductance form [12] 
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where the attenuation coefficient is  
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and Q0 – reference coefficient, J/m3; Kg – coefficient of 
approximation of unitary conductance, S/m; l – arc length, 
m; pS – density of power dissipated through the lateral 
surface of the arc column, W/m2; S – arc cross-section area, 
m2. All the three parameters Q0, Kg, pS are obtained 
experimentally and assumed to be constant.  

For a free, or partly free arc  
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and the attenuation coefficient is  
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As can be seen, in this model the dissipated power 
coefficient and the attenuation coefficient are proportional to 
the arc column diameter, which in turn depends on the 
current. Equation (12), then, becomes 
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In publication [2] static characteristics of that model are 
analysed and it is demonstrated that by means of the 
experimentally obtained function d(i) it is possible to arrive 
at curves corresponding to the conditions conducive to heat 
transfer from the arc to the cool external region, occurring 
mainly by means of surface radiation. Such curves and 
conditions are encountered in welding and in initial stages 
of charge melting in arc furnaces. The graphs u(i) are also 
similar to the characteristics of arcs operating in the range 
of low currents.  
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In Sawicki’s model [2, 8] it is assumed that the dissipated 
power is proportional to the plasma volume  
 

(17)    lSpSlP VdisV ,   
 

and the model obtained is one with variable geometrical 
parameters S(t) and l(t). It takes the general conductance 
form  
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where the attenuation coefficient is  
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For a free, or partly free arc  
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As evident above, the value of the dissipated power in 
this model is proportional to the area of the arc cross-
section, which in turn depends on the current, and the 
attenuation coefficient is constant. Then, Equation (18) 
becomes  
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In publication [2] the static characteristics of this model 
are analysed and it is demonstrated that when the 
experimentally obtained function d(i) is applied it is possible 
to arrive at curves representing the adverse conditions of 
heat transfer from the arc to the hot surrounding region, 
mostly by radiation and convection. Such conditions and 
curves are attested in the final stages of charge melting in 
arc furnaces. The graphs u(i) are also close to 
characteristics of arcs in high current ranges.  

The experimental studies on the free arc during the 
quasi-static current alteration show that the following holds  
 

(22)    q
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If the arc is in air, then b = 0,0025 cmA-q. If the arc is 
submersed in a longitudinal gas stream, q = 0,60,7 [13]. 
The value of (22) is close to the theoretically obtained one, 
in which q = 2/3, but the coefficient b given in [14] is almost 
three times larger (b = 0,0062). This proves high 
discrepancy between different sets of experimental data. 
Due to inertia of heat processes in AC arcs, especially 
those of higher frequency or with steep curves passing the 

zero value of current, during the momentary lack of current 
there still exists a conducting plasma channel, which 
facilitates the next discharge. The current drop is 
accompanied by a very quick weakening of the effect of 
plasma being shrunk by its own magnetic field, since the 
pressure increase in the radial direction is pr  i2. 
Additionally, on some electrodes the current drop can result 
in a change in the structure of the cathode spot, a change in 
the cathode emission state, restructuring of the conical part 
of the plasma column, etc. Owing to these factors, the arc 
diameter function can have its minimum at the point of 
relatively small, non-zero value of current. This is confirmed 
by experimental studies on the time constant [15], which, 
according to (15) is proportional to the arc diameter. To 
approximate the dependence of the arc diameter on the arc 
current it is possible to employ one of the symmetrical 
functions with an appropriate derivative 
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where    titi * ,  - very small constant (eg.  = 110-2), 
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Approximation (22) and its associate (23) suggested in the 
literature [13, 14] are in fact inconvenient in numerical 
calculations due to very high values of the derivative dd(i)/di 
for very low currents i  0. Functions (24) and (25) offered 
here are much more manageable in this respect.  

In the hybrid TWV model of the arc [16] it is assumed 
that there are various heat dissipating channels (Mayr’s 
model - conduction, Cassie’s model – convection), 
depending on the value of the current. It can also be 
assumed here that Voronin’s model is operative for weak 
currents, whereas Sawicki’s model for strong currents . In 
this way, Voronin-Sawicki’s hybrid model (VS) is obtained 
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where (d(i)) – the generalized attenuation function, which 
can be described by means of a formula analogous to (23)-
(25). In can be approximately assumed that in this model  
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where dmax – corresponds to the current amplitude (dmax = 
d(Imax)) . 
 
Problems of selecting the weight function in hybrid arc 
models  

In the original hybrid arc model TWV [16] the simplest 
form of the weight function was suggested (a Gaussian 
function)  
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where I0 – is the boundary current of switching between 
Cassie’s and Mayr’s models – the inflection point (I0, e

-1).  
A number of simulations were performed and the results 
were compared to experiments in which high power AC 
plasma torches were used [17]. On the basis of that a 
modified weight function was put forward, with strong 
asymmetry with respect to the inflection point  
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The advantage of formula (29) is that it is simple, on the 
other hand, it is also characterised by limited flexibility in 
curve shape alterations. In the search for a new weight 
function a modified form of formula [9] can be employed 
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where  is a very small quantity (0 <  <<1). Here  = 1*10-3.  
If the departure point is a unipolar sigmoid function, another 
weight function is obtained [9, 18] 
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where  >>1. Increase in the coefficient  causes that the 
curves become steeper near the boundary point (I0, 0,5). 
The weight function can be easily rendered asymmetrical, 
analogously to (29) and (30), by modifying the formula 
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The choice of a particular weight function depends on 
the required accuracy of approximating the experimental 
results and the shape of dynamic VC arc characteristics. 

The latter, in turn, depend on the chemical composition, 
pressure and thermal state of the gas, shape, material, 
dimensions and position of the electrodes, parameters 
(amplitude, frequency) of the periodical forced current, 
external interference, etc. The effectiveness of applying the 
weight functions described above in hybrid arc models is 
discussed in [9]. 
 
Representing the variable attenuation coefficient in arc 
models  

The amount of internal energy accumulated in an arc 
depends on a number of physical factors: plasma volume 
(radius, length, shape of the column), temperature 
distribution in the arc column, gas pressure, degree of 
plasma ionization, etc. The arc internal energy cannot 
change in a discrete manner during commutation, and 
consequently, other parameters, such as dissipated power 
and conductance cannot change discretely either. Since the 
arc is a non-linear element of the electric circuit, the curves 
of transient processes are not exactly exponential functions. 
Despite this, a constant arc attenuation coefficient is 
introduced and assumed to be such during the whole 
process [19].  

The arc time constant is shorter by 23 orders of 
magnitude (10-610-7 s) in arc torches as compared to free 
arcs. The greater the velocity of gas flow around the arc 
column or the velocity of arc in gas, the smaller the time 
constant. For high gas velocities the arc time constant does 
not depend on gas composition or electrode types. As the 
current increases up to the magnitude of hundreds and 
thousands of amperes, the values of time constants in 
various gases converge and approach the value of about 
10-4 s [19].  

The methods of obtaining the time constant can be 
generally divided into experimental and theoretical ones. 
The dynamic properties of the arc can be best observed 
during current modulations. Due to the fact that the 
distributions of current intensity, temperature, plasma flow, 
etc. are highly non-homogeneous, there are differences in 
relaxation times between processes occurring in the core 
and on the surface of the arc column. The analysis of the 
shape of the function ln(u(t)) representing the voltage 
response to a discrete current fluctuation makes it possible 
to find the time constant of heat processes in the core f 
and on the surface S, where f < S. Typically, however, an 
equivalent time constant is introduced, based on 
generalized relaxation times not only in the arc column, but 
also on electrode spots. This kind of a characteristic is 
shown in Fig. 1. As is seen, the decrease in current results 
in a local minimum around the value of 18 A. Further 
decrease in current corresponds to significant increase in 
the value of the time constant. The difference becomes 
even more dramatic when the gas flow around the arc is 
intensified [15].  
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Fig. 1. Time constant characteristics as a function of arc discharge 
current in the constrictor channel of plasma torch with nitrogen [15] 
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The arc time constant obtained experimentally by 
introducing small fluctuations during the quasistatic 
alteration of direct current can be different from the AC arc 
time constant, especially in the range of very weak currents 
where the arc becomes unstable. Due to that it is more 
reliable to determine the time constant by measuring the 
time from the moment of the current passing zero to the 
moment of arc ignition or extinction. Alternatively, the 
constant can be determined on the basis of the analysis of 
arc voltage harmonics.  

Since the simplified mathematical models are 
approximations of the electrical arc characteristics within 
narrow ranges of current, the choice of the form of the 
dissipated power function is correlated to the time constant. 
In some constant-length arc models, however, such as 
Schwarz-Avdonin’s model, the arc time constant is 

approximated by a power function 
    Sgg '

00   In 
hybrid models, encompassing wide ranges of currents, the 
choice of the attenuation coefficient function often requires 
taking into account a more complex function (i). In [16] the 
general behaviour of the equivalent attenuation coefficient 
in a hybrid TWV model is described by the formula  
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where  > 0 i 1 >> 0. On the basis of Equation (15) and 
Fig.1 it is possible to offer more precise approximations of 
the attenuation coefficient, applying the proportion (i)  
d(i). In order to do this, one can use one of the formulas 
(23)-(25). 

 
Simulation of processes in models with variable-length 
free arcs  

Assume that arc length changes are relatively slow (dl/dt 
 0). Then (16) becomes  
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With new symbols, it becomes  
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where     idlKidlP SdisS , , [W]; SS pK  , [Wm-2]; 

St pQK /25.0 0 , [sm-1];  gG KK /4 , [mS-1]. 

Static characteristics of the arc determines the relationship 
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which in the case of approximation (22) takes the form 
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On the same assumption (dl/dt  0) Equation (21) also 
becomes simpler  
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and with new symbols  
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where VV pK 25.0 , [Wm-3]. Static characteristics of 

the arc determines the relationship 
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which in the case of approximation (22) takes the form 
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Simplified Voronin-Sawicki’s model (26) can be represented 
as  
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and with the newly introduced symbols it becomes  
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Since the approximations of the function d(i) cover the full 
current range, then the attenuation coefficient (d(i)) = Ktd(i) 
can be applied in the hybrid model. Static characteristics of 
the arc determines the relationship 
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which in the case of approximation (22) takes the form 
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Practical applications of the mathematical models of the 
variable-length arc for simulating the working conditions of 
welding and electrothermal devices can be largely 
facilitated by implementing their macromodels in the 
popular software MATLAB-Simulink. Effects of such a 
simulation in a serial circuit with a current source (Imax =200 
A, f = 50 Hz), reactive elements RL (R = 0.01, L = 1 mH) 
and electric arc are shown in Fig.2 where the 
appropriateness of the arc models developed is confirmed. 
It was assumed the resultant voltage drop near the 
electrodes 18 V. Uses the function approximation (24) with 
coefficients: a=0.054, b=0.64, p=0.0059, q=0.0072.  
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Fig 2. Dynamic hysteresis loops of an extending arc: a) Voronin’s 
model (35), (KS=30105 Wm-2, Kt=0.02 sm-1, KG=0.05 mS-1); b) 
Sawicki’s model (38), (KV=15107 Wm-3, V=610-4 s, KG=0.2 mS-1); 
c) VS hybrid model (41) (KS=30105 Wm-2, KV=15107 Wm-3, 
Kt=0.016 sm-1, KG=0.2 mS-1, I0=5 A) 
 
Conclusions  
1. Combined models of the non-stationary, variable-length 

electric arc offer new possibilities of simulating processes 
in circuits with various electric currents and various 
moments when fluctuations occur or control is applied.  

2. Tying the dissipation power and attenuation coefficient 
with the geometrical dimensions of the arc column makes 
it possible to precisely represent the dynamic arc 
characteristics in various operating conditions and stages 
of electrotechnological devices.  
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