
PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 3a/2013                                                                              179 

Jianmin WU1, Zhiying MOU1, Yan ZHOU2, Jianxun LI3 

Science and Technology on Avionics Integration Laboratory (1), College of Information Engineering, Xiangtan University (2) 
Department of Automation, Shanghai Jiao Tong University (3) 

 
 

A Comparison of Bistatic Bearings-Only Tracking Methods 
 
 

Abstract. Target tracking using bistatic bearings-only measurements has obtained distinct interest recently. It is a nonlinear problem that traditional 
Kalman filter (KF) can not be applied directly. In this paper, the triangular ranging formula has been derived first for bistatic bearings-only tracking. 
The ranging error is then proved to be Gaussian noises, which enable the traditional KF applicable. The recently developed unscented Kalman filter 
(UKF) is also applied to the nonlinear measuring equation directly. To further improve the tracking accuracy especially in case of maneuvering target 
tracking, interactive multiple model (IMM) is adopted. Simulation results for both constant velocity moving target and maneuvering target are 
included to compare the performance of the aforementioned methods. The triangular ranging method, triangular-ranging-based Kalman filtering 
(TRKF), UKF, TR-IMMKF, and IMM-UKF are compared extensively using the criterion of root of the mean squared error (RMSE) and computational 
burden, as well as the robustness. 
 
Streszczenie. W artykule zaproponowano formułę o zasięgu trójkątnym w zastosowaniu do bistatycznego wyznaczania namiaru (pelengu). W 
rozwiązaniu wykorzystano m. In. filtr Kalman’a do pomiaru wielkości nieliniowych. Wyniki badań symulacyjnych, dla obiektów w ruchu jednostajnym 
lub zmiennym, pozwalają na porównanie działania metod. Porównano także metody TRKF, UKF, TR-IMMKF, IMM-UKF, pod względem błędów 
średniokwadratowych, odporności, złożoności obliczeń. (Porównanie bistatycznych metod wyznaczania namiaru kątowego). 
 
Keywords: bearings-only, target tracking, interactive multiple model, unscented Kalman filter. 
Słowa kluczowe: śledzenie celu, namiar, wieloskładnikowy model, filtr Kalmana. 
 
 
Introduction 

In many applications, such as submarine tracking and 
aircraft surveillance, bearings-only sensors are commonly 
used to collect observations about target trajectory [1-2]. 
The aim of bearings-only tracking is to determine the target 
trajectory data using noise-corrupted bearings-only 
measurements from one or more platforms. Using bearings-
only sensors, the platforms can be concealed very well, and 
the enemy target can be disturbed and attacked effectively 
[3]. Therefore, target tracking using bearings-only sensors 
have obtained distinct interest in last decades. Single 
bearings-only tracking is prone to be unobservable at one 
hand, optimizing the maneuvering trajectories of the 
platform is an open problem at the other hand; More 
importantly, the robustness from more than one platforms 
based tracking system can be improved. If one platform 
does not work because of the reasons such as sudden 
attack, the tracking mission can be still carried on. Hence 
two or more bearings-only platforms based cooperative 
target tracking has received more and more attentions 
these years [4-5]. 

Unfortunately, this particular estimation problem is not 
amenable to simple solution because of the intrinsic 
nonlinearities in the observing equation. This also makes 
the traditional Kalman filter not applicable. For years, the 
problem has served as a typical example to which many 
methods for nonlinear filtering have been applied. There are 
usually two kinds of solutions to handle the problem. The 
first one consists of using the extended Kalman filter (EKF) 
in a Cartesian coordinate system to solve the problem. This 
solution does not account for the spread of the random 
variables and uses only the first-order Taylor expansion of 
the nonlinear functions. Therefore, it often leads to the 
divergence of the filter. The second one, proposed by 
Lindgren and Gong in [3], consists of deriving a pseudo- 
linear measurement equation. Then a Kalman filter can be 
used to solve the problem. The stochastic stability analysis 
of the estimates had been addressed by Song and Speyer 
in [6]. However, it always contains bias by pseudo- 
linearization and debias techniques bring more 
computational burden.  

To avoid the flaws of the EKF, several recent works [see 
e.g. 7-8] (referred as unscented Kalman filters, UKF) have 
used deterministic sampling techniques and the unscented 
transform to propagate the mean and variance. In addition, 

the particle filter (PF) has been applied to this problem [9]. It 
approximates the posterior density by a large number of 
random (Monte Carlo) samples. However, even the PF did 
not show any obvious advantage over other traditional 
methods [10]. 

 Other notable references in this field include [11-12]. In 
[11] use of multiple sensors in bearings only tracking is 
studied, where sensors are relatively close to each other 
(multiple sonar arrays towed by the same ship), and receive 
the same signal from the target. In [12] dynamic 
programming is used to track maneuvering targets using 
bearings only measurements, where the track state space 
is discretized in two models, nonmaneuvering and 
maneuvering. 

In this paper, the three dimensional (3-D) triangular 
ranging formula is derived first for bistatic bearings-only 
tracking; then the ranging error is proved to be Gaussian 
noises with zero-mean, which enables both traditional 
Kalman filter and unscented Kalman filter applicable. To 
further improve the tracking accuracy, interactive multiple 
model (IMM) is adopted. Simulation results for both 
constant velocity moving target and maneuvering target are 
included to compare the performance of the aforementioned 
methods. The triangular ranging method, triangular-ranging-
based Kalman filtering (TRKF), UKF, TR-IMMKF, and IMM-
UKF are compared extensively using the criterion of root of 
the mean squared error (RMSE) and computational burden, 
as well as the robustness. 
 

Problem formulation 
In this paper, we consider the scenario of 3-D tracking 

by two airborne platforms, as shown in Fig. 1. The i-th 
(i=1,2) bearing-only sensor observes the target in terms of  
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where T(xp(k), yp(k), zp(k)) and Pi(xi(k), yi(k), zi(k)), i=1,2 are 
the target and the i-th platform location in the Cartesian 
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coordination at the k-th time-slot, respectively. φi(k) and θi(k) 
are the noise corrupted azimuth and elevation 
measurement for i-th sensor respectively. ( )

i
d k  and 

( )
i

d k  the noise. For easy notation, the sampling time k is 

omitted thereafter without illegibility. Furthermore, the 
measuring noises are supposed to be independent 
Gaussian noises with zero mean and 
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Fig.1. Bistatic bearings-only tracking in 3-D. The platforms are 
denoted as a pentagon respectively, a single target denoted as the 
red real line moves along a constant velocity or a maneuvering 
model 
 

The purpose of bearings-only tracking is to estimate 
state of the target including position, velocity and 
acceleration etc. As can be seen from Fig. 1, the target 
location can be determined by triangular ranging given the 
bearings-only measuring. However, the bearings-only 
measures unavoidably contain noises that affect the 
tracking accuracy. Hence, a novel triangular ranging based 
Kalman filtering algorithm will be proposed in section 3.2. 
Considering the nonlinearity in measuring equation (1), 
recently developed nonlinear filter techniques such 
unscented Kalman filter is also included in section 3.3. To 
attack the target maneuvering, interactive multiple model 
using either triangular-ranging-based Kalman filters or 
unscented Kalman filters is adopted in section 3.4. All these 
methods are compared in section 4 including the tracking 
accuracy and the computational burden, as well as the 
robustness. 
 
Target tracking methods 
Triangular ranging error analysis 

In the absence of measuring noise, we can obtain the 
following passive raging formula through triangulation 
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However, it is unavoidable to have noises in practical 
application. Then the ranging formulation in (3) presents 
location error. In order to derive the error, we give a 
differential to each element in (1) and obtain the following 
location error equation  
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In a more compact form, it can be rewritten as 
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It is obvious that matrix C is reversible. Hence the 
location error can be derived as 

 

(6)                            1( )dX C dV dK   
 

It is worth mentioning that the location error for (3) in the 
Cartesian coordination (dxp, dyp, dzp) is a linear mapping of  
(dφ1, dφ2, dθ1) and (dxi, dyi, dzi) (i=1,2), the positioning error 
of both platforms. Recalling that the measuring noise is 
Gaussian with zero mean and the platform location contains 
no error (i.e. dK=0), we can conclude that the location error 
(dxp, dyp, dzp) is still a zero mean Gaussian random variable. 
Moreover, the covariance matrix can be easily derived from 
(6) and formulated as follows 

 
1T T TR E dXdX C E dVdV C          
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Triangular-ranging-based Kalman filtering (TRKF) 

Based on the passive ranging formula in (3), the 
bearings-only measurements are converted to target 
position in Cartesian coordination (xp(k), yp(k), zp(k)), where 
the location covariance matrix is given by (7). Then, based 
on traditional linear filtering techniques such as Kalman 
filter, the target state can be obtained recursively [13]. It has 
been proven that the location error (dx, dy, dz) is a zero 
mean Gaussian random variable. Hence the conversion is 
unbiased and the new measuring equation can be 
formulated as 
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vector of the target. H is the corresponding measurement 
matrix and 
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If the constant acceleration (CA) kinetic model is used, 
the state evolves as  
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whereas T stands for the sampling period. Based on the 
kinetic model (10) and measuring equation (8), the 

traditional Kalman filter can be used to get the target state 
estimate. 

Unscented Kalman filtering (UKF) 
Using the dynamic equation (10) and the measuring 

equation (1), the state of the target can be directly 
estimated through some traditional nonlinear filtering 
scheme. Noticing the dynamic equation (10) is linear, the 
main difficult lies in the nonlinearity in (1). The celebrated 
extended Kalman filtering (EKF) linearizes (1) around a 
single point ( ˆ( | 1)x k k   for the observation update). This 

solution does not account for the spread of the random 
variables and uses only the first-order Taylor expansion of 
the nonlinear functions. Therefore, it often leads to the 
divergence of the filter. To avoid the flaws of the EKF, 
unscented Kalman filters using deterministic sampling 
techniques and the unscented transform to propagate the 
mean and variance is proposed. 
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Within the UKF framework, the different available 

algorithms differ in the way they specify the initial set of 
weighted sigma-points so as to capture the most important 
information about the random variable of interest. We will 
only summarize the UKF for illustration purpose. In this 
algorithm, the n-dimensional random variable x is 
approximated by 2n+1 sigma-points given by 
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where   is a scaling parameter usually chosen as 0 or 3-n 

and  iP  denotes the i-th row of the Cholesky 

decomposition of P. It is shown that this procedure 
produces accurate results for the predicted mean and 
covariance up to the third order of the Taylor series for 
Gaussian noises and at least up to the second order for 
other types of noises. 
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IMM approach to naneuvering target tracking 
The aforementioned TRKF and UKF are both single-

model-based. However, a single-model-based tracking 
approach is not adequate to handle complex maneuvering 
scenarios. One way to treat this problem is the interacting 
multiple model (IMM) filter [14]. For the IMM approach, the 
single-model-based filters interact each other in a highly 
cost-effective fashion and thus lead to significantly 
improved performance. It also consists of a bank of single-
model-based filters running in parallel at each cycle. The 
initial estimate at the beginning of each cycle for each filter 
is a mixture of all most recent estimates from the single-
model-based filters. It is this mixing that enables the IMM to 
effectively take into account the history of the modes (and, 
therefore, to yield a more fast and accurate estimate for the 
changed system states) without the exponentially growing 
requirements in computation and storage as required by the 
optimal estimator.  

The following procedures should be performed in the 
application of the IMM estimation technique for target 
tracking: (i) filter reinitialization; (ii) model-conditional 
filtering; (iii) model probability updating; (iv) estimate fusion.  

Step 1 Interaction and mixing of the estimates: filter 
reinitialization (interacting the estimates) obtained by mixing 
the estimates of all the filters from the previous time (this is 
accomplished under the assumption that a particular mode 
is in effect at the present time). 

1) Compute the predicted model probability from instant 
k to k+1: 
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where the superscript 0 denotes the initial value for the next 
step. 

Step 2 Model-conditional filtering 
The filtering techniques such as (E)KF and UKF can be 

applied for model-conditioning filtering. It contains the 
prediction step and correction step. 

A. Prediction step: 
1) Compute the predicted state and covariance: 
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where the subscribe j denotes the j-mode in effect at the 
present time-slot k. ( )jQ k  is the process noise covariance 

matrix for j-model. 
2) Compute the measurement residual and correct the 

state prediction according to different filtering techniques 
such as Kalman filter and UKF. 

Step 3 Updating the model probability 
The model probability is an important parameter for the 

system fault detection and diagnosis. For this, a likelihood 
function should be defined in advance, and then the model 
probability be updated based on the likelihood function. 

1) Compute the likelihood function: 
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2) Update the model probability: 
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Step 4 Estimate fusion and combination that yields the 
overall state estimate as the probabilistically weighted sum 
of the updated state estimates of all the filters. The 
estimates and covariance matrices can be obtained as: 
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More details for the IMM algorithm can be found at [14-
15] and the references therein. 
 

Simulation and comparison 
In this section, the aforementioned triangular ranging, 

TRKF, and UKF are implemented to Monte Carlo simulation 
for tracking in two different scenarios: target moving with 
constant velocity and target maneuvering scenario. In order 
to attack the maneuvering of the target, both TRKF and 
UKF based interactive multiple model method are also 
included. The performance criterions include root of the 
mean squared error (RMSE) and the computational burden. 
Scenario 1: target moving with constant velocity 

The trajectories of the target and platform 1 (P1) and 
platform 2 (P2) are illustrated in Fig. 2. The target moves 
from (35, 15, 0.1) Km with a constant velocity 200m/s; P1 
and P2 are also moving along the line with constant velocity 
200m/s. 

The sampling period is 1s and the standard deviation of 
the measuring noise is 6mrad. Three different cases are 
tested: (i) model matched case; (ii) model mismatched 
case; and (iii) IMM case. 

(i) Model matched case 
In this case, the constant velocity model is used for the 

TRKF and UKF, which are compared with triangular ranging 
(TriRang) technique. After 500 Monte Carlo runs, the mean 
RMSE on position are compared in Fig. 3. From the figure, 
it is obvious that the triangular ranging has the worst 
tracking accuracy as the angle measurements contain 
noises. The TRKF, on the contrary, has much better 
accuracy than triangular ranging method. The UKF obtains 
even better accuracy than the TRKF since the deterministic 
sampling techniques are adopted by UKF. Similar results 
have been obtained for the velocity RMSE, which is omitted 
for the space reason. As far as the computational burden is 
concerned, we use the mean running time as the criterion. 
The mean running time over 500 Monte Carlo simulations 
for the TriRang, TRKF and UKF are 3.1, 7.2 and 11.2 ms, 
respectively. 
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Fig. 2. Trajectories for the first scenario/m 
 

 
Fig. 3. Position RMSE comparison among TriRang, TRKF and UKF 
in case of matched model 
 

(ii) Model mismatched case 
The purpose is to check the robustness of TRKF and 

UKF. In this case, we use the constant acceleration model 
for the TRKF and UKF. After 500 Monte Carlo runs, the 
performance degradation on RMSE for TRKF and UKF are 
respectively 43.7% and 31.5% compared with the model 
matched case. This means that the UKF is a little more 
robust against model mismatch than the TRKF method. 

(iii) IMM method 
We use a constant velocity model and two constant 

acceleration models with different process noises to 
approximate the target trajectory and set the transition 
probability matrix 

 

0.92 0.05 0.03

0.1 0.8 0.1

0.1 0.2 0.7


 
   
    

 

for both the proposed and triangular ranging based IMM-KF 
(TR-IMMKF) and IMM-UKF approach. Both initial mode 

probabilities are set as 0 [1/ 3,1/ 3,1/ 3]  . After 500 

Monte Carlo runs, the RMSE for the three approaches are 
given in Fig. 4. From this figure, the triangular ranging 

approach has the lowest tracking accuracy while the 
proposed TR-IMMKF approach performs not better, at least 
very closely to the IMM-UKF approach. The mean 
computational burden for the three approaches is 
respectively 16.3，29.7, and 83.2ms, respectively. In other 
words, the proposed TR-IMMKF approach has much 
smaller computational cost since the interacting process is 
based on triangular ranging using Kalman filters directly. On 
the contrary, for the IMM-UKF, each filtering bank uses 
deterministic sampling techniques. 

 

 
Fig. 4. Position RMSE comparison among TriRang, TR-IMMKF and 
IMM-UKF 
 
Scenario 2: target maneuvering 

The trajectories for the target and the platforms (P1 and 
P2) are given in Fig. 5. The target first moves for 10s from  
(35,8,1)km with the velocity of 200m/s; then turns left for 
20s with acceleration centripetal 20m/s2; then moves along 
the straight line for 10s and turns right for 30s with 
acceleration centripetal 20m/s2; finally moves 30s with the 
constant velocity. Other parameters are set same as in the 
1st scenario. The mean RMSE and mean computational 
cost after 200 Monte Carlo runs are given in Table 1. 

 

 
Fig. 5. Trajectories for the maneuvering scenario/m 

 

 
Table 1 Performance comparison in the maneuvering scenario 

Tracking 
Method 

Position RMSE 
[m] 

Velocity RMSE 
[m/s] 

Acceleration RMSE 
[m/s2] 

Computational  
Burden [ms] 

Triangular Ranging 444.3 430.2 152.8 15.9 
TR-IMMKF 291.2 84.4 21.9 29.4 
IMM-UKF 248.9 91.6 19.8 67.9 
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Conclusion 
Target tracking by two airborne platforms with bearings-

only measurements is a nonlinear problem, in which 
Kalman filter can not be applied directly. In this paper, the 
triangular ranging formula has been derived for bistatic 
bearings-only tracking. The location error has been proved 
to be Gaussian noises, which enable the traditional Kalman 
filter and unscented Klman filter applicable. To further 
improve the tracking accuracy, interactive multiple model 
(IMM) has been adopted. Simulation results for both 
constant velocity moving target and maneuvering target 
have been included to compare the performance of the 
aforementioned methods. The triangular ranging method, 
triangular-ranging-based Kalman filtering, unscented 
Kalman filter, and interactive multiple model are compared 
extensively using the criterion of RMSE and computational 
burden, as well as the robustness. 
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