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A class of electrostatic problems involving a circular annulus 
 
 

Abstract. This paper deals with the distribution of electric scalar potential within an infinitely long electrodes system the cross section of which is a 
circular annulus. We provide guidelines about an efficient method for solving a wide class of electrostatic problems. 
 
Streszczenie. W artykule omówiono zagadnienie rozkładu potencjału elektrycznego na nieskończenie długich elektrodach, modelujących pierścień 
kołowy. Przedstawiono sposoby rozwiązywania zagadnień elektrostatyki, dotyczącej danego przypadku. (Zagadnienia elektrostatyczne dotyczące 
pierścieni kołowych). 
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Słowa kluczowe: potencjał elektryczny skalarny, równania Laplace’a i Poisson’a, funkcjonalność pierścienia kołowego. 
 

 
Preliminaries 

In this part of the paper we will remind the reader of the 
well-known solutions of two differential equations. Let N  be 
the set of all natural numbers and let n N . Further, 

1j    and ( )R R r  is twice differentiable and 

continuous function in the domain of definition.  
 The differential equation of the second order (model #1) 
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has two linearly independent solutions 
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Similary, solutions of the differential equation (model # 2) 
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and can be rewritten in the following forms 
 

(5)   )ln(cos)(1 rnrR    and   )ln(sin)(2 rnrR  . 

 
Introduction 

Electric scalar potential within the infinitely long tubes, 
coaxial tubes or groves with the cross sections that contain 
circles or parts of circles, can be obtained by integration of 
Laplace's equation in cylindrical coordinates , ,r z . In the 
problems under consideration, electric scalar potential 

)θ,(r  does not depend on the z  coordinate and the two-

dimensional Laplace's equation has the form 
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The common technique for solving Laplace's equation is 
known as the method of separated variables. This method 
is based on the assumption that the solution is the product 
of two functions and that each one is the function of only 
one variable, i.e. ( , ) ( ) ( )r R r T    . Thus, Laplace's 

equation reduces to 
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The next step is to assume that 
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where C  is an arbitrary constant. Consequently, Laplace's 
equation will be split into two independent differential 
equations 
 

(9)  0)(
)(

2

2





CT

T
 and 

 

(10) 0
d

d

d

d
2

2
2  CR

r

R
r

r

R
r . 

 

The choice of C  leads to two different models. 
However, the final solution of Laplace's equation has to 
satisfy all boundary conditions. Considering all of the 
boundary conditions, the constant value C  has to be 

chosen to be negative, 2nC  , or positive, 2nC  . In the 

first case the particular solution for )θ(T  is θ -periodical 

and leads to the model #1 for )(rR , and in the second case 

the particular solution for )(rR  is r -periodical and this is 

the model #2. Nevertheless, in the solution of some 
problems the value 0n  has to be taken into account, but 
in our examples this is not the case. The final solution is a 
linear combination of an infinite number of particular 
solutions that satisfies all boundary conditions and that 
solution is unique. 
 
The basic problem. Let us consider infinitely long coaxial 
electrodes the cross section of which is a circular annulus. 
The inner and outer electrodes have radii a  and b , and 
potentials 0   and U  , respectively. The distribution 

of electric scalar potential does not depend on angular 
coordinate   and the solution of the one-dimensional 
Laplace's equation is trivial and can take the form 
 

(11) ( ) ln
U r

r
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b

a
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This form of the solution leads to the idea that   is the 

constant that is given for any circular annulus and can be 
used in cases when distribution of electric scalar potential 
depends on the angular coordinate. 
 
The first problem. The electric scalar potentials of the 
walls of the circular annulus sector, Figure 1, are prescribed 
by boundary conditions. The similar problem can be found 
in [1,2]. 
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Boundary conditions 
 

1)  0  for 0  and bra   

2)  0  for   and bra   

3)  0  for ar   and 0  

4)  U  for br   and 0  
 
Fig 1 Cross section of the circular annulus sector - model #1 
 
 It is quite natural to assume that the function )(T  is 

periodical, 
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and such solution ensures that the first and the second 
boundary conditions are automatically satisfied. 
 Consequently, this means that we have model #1 for 

)(rR , 
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and, thus, the third boundary condition is satisfied. The final 
solution of Laplace's equation that satisfies all boundary 
conditions except the last is a linear combination of an 
infinite number of particular solutions, 
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where the constants nC  are undetermined at present. 

These constants can be determined by satisfying the last 
boundary condition expressed in the form of Fourier's 
series, 
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and setting it equal to the final form of the solution for 
br  . Thus, we have 
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 Substituting (13), (14), (17) and (18) in (15), we obtain 
the final solution of Laplace's equation that satisfies all 
prescribed boundary conditions.  
 
The second problem. Consider the circular annulus sector, 
Fig. 2, the cross-section of which is the same as in the 
previous problem. In this case boundary conditions are 
different from the previous ones and define the electric 
scalar potential on the walls of the sector as follows.  
 
  

  

Boundary conditions 
 

1) U  for 0  and bra 
2) 0  for   and bra   

3) 0  for ar   and 0

4) 0  for br   and 0  

Fig 2 Cross section of the circular annulus sector - model #2 
  

 It is natural that the function )(rR  has to be periodical, 

i.e. we have model #2. Let us introduce the following 
notations (see Appendix), [3]: 
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The constant   arises from the basic problem and ensures 
that the pair of particular solutions (5) is orthogonal in the 
domain of definition, bra  , with weighting function 

r/1 . The solution (15) of Laplace's equation (6) that 
satisfies all of the boundary conditions except the first has 
the form 
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where constants nC  are undetermined at present. 

The first boundary condition, 
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has to be expressed in the form of Fourier's series 
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where constants na  can be obtained using orthogonal 

properties (see Appendix) 
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When we substitute (24) in (25) and use the integration 
formula (see Appendix) we can compare obtained result 
with expression (22) for 0 . Thus we have 
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Finally, the distribution of electric scalar potential within the 
groove is 
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It is obvious that boundary conditions 0),(  r , 

0),(  a , 0),(  b  are satisfied. The first boundary 

condition 
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corresponds to the well-known result 
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consequently, this means that bra  holds. However,  
the first boundary condition and limits of integration show 
otherwise. This is not ambiguous because there is always 
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an infinitely small gap between electrodes on different 
potentials and this remark also applies for the first problem. 
Also, this difference appears whenever a pulse function has 
to be expanded into the series. 
 

Application of circular annulus functions 
 The flat electrode on the potential U  is placed into 

the circular annulus. The electrode is perpendicular to the 
walls that have the potential 0 , Fig 3. Direct application 

of presented method immediately leads to the final results. 
 

 

Boundary conditions 
 

0  for ar   and  20  

U  for 0  and bra   

0  for br   and  20  

0



 for   

Fig 3 Electrode in circular annulus 
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 As a second example consider line charge q  inside the 

circular annulus the walls of which have potential 0 , 

Fig 4. 
 

 

Boundary conditions 
 

0  for ar   and  20  

0  for br   and  20  

Fig 4 Line charge in circular annulus 
 
 This problem can be solved by multiple use of the 
theorem of images. In this case we have two concentric 
perfectly conducting cylindrical mirrors. In the light of this 
work, Poisson’s equation has to be sold,  
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where   is Dirac’s delta function. 
 The first step is to solve the corresponding homogenous 
equation and this is model #2. The next step is to apply 
Lagrange’s method of constants variation. Thus, the time 
solution is 
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Appendix 
Definitions 
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The pair of linearly independent solutions is 
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The most properties of these functions follow directly 
from those of circular functions by use of the above 
definitions, [4]. 
 
Graphs 

 
 

 
 
Limiting Values 
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Differentiation Formulas 
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Wronskian 
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Integration Formulas 
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Orthogonal Property 
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Conclusion 
The distribution of electric potential in exterior domain 

can be obtained by the method of inversion. Without any 
difficulties, the obtained results can be expanded to an 
annulus bounded by two confocal ellipses. Likewise, the 
same method can be applied to waveguides of atypical 
cross sections. 
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