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Abstract. In this paper, a completely real-valued approach for direction finding is developed. The proposed algorithm using high order powers of the 
sample covariance matrix to approximate the noise subspace in the real domain, so that the computational burden is substantially reduced and the 
number of incident sources is not required. Numerical simulation results demonstrate the satisfying performance of the proposed method under 
various scenarios with uncorrelated or pairwise correlated signals.  
 
Streszczenie. W artykule przedstawiono metodę wyznaczania kierunku, której działanie opiera się na wyznaczaniu wysokich potęg macierzy 
kowariancji próbki, w celu aproksymacji podprzestrzeni zakłóceń w dziedzinie rzeczywistej. Pozwala to na redukcję obciążenia obliczeniowego. Nie 
jest wymagana informacja o ilości źródeł. Przedstawiono wyniki symulacji numerycznych, weryfikujące skuteczność proponowanej metody. (Metoda 
wartości rzeczywistych estymacji kierunku w oparciu o aproksymację podprzestrzeni). 
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Słowa kluczowe: estymacja kierunku przybycia, aproksymacja podprzestrzeni, transformacja jednostkowa. 
 
 
1 Introduction 

Direction-of-Arrival (DOA) estimation is a very important 
topic in array signal processing. Nonparametric subspace 
methods, such as multiple signal classification (MUSIC) [1], 
estimation of signal parameters via rotational invariance 
techniques (ESPRIT) [2], are well-known for high spatial 
resolution. By making good use of the array geometry, 
these methods may be further enhanced with reduced 
computational load. The uniform linear array (ULA) with 
centro-symmetric configuration is particularly studied, and 
several excellent algorithms have been developed. The first 
one, as far as we know, is the Unitary-MUSIC proposed in 
[3]. Then, Haardt and Nossek presented the method of 
unitary ESPRIT [4], which completely operates in the real 
domain. In [5], Pesavento and Gershman introduced a 
unitary formulation of the root-MUSIC method. Low 
complexity covariance-based approaches for direction 
finding are proposed in [6, 7]. In the single snapshot case, 
Thakre et al. improved the effective array aperture via 
unitary transformation [8]. Recently, the unitary MUSIC 
algorithm are extended and applied to the electronically 
steerable parasitic array radiator (ESPAR) antennas to 
enhance the performance [9]. The previous methods reduce 
the computational complexity by transforming the receiving 
data into real domain. Meanwhile, by virtue of the forward-
backward averaging, the estimation accuracy is improved 
since the sample size is virtually doubled. Unfortunately, all 
these real-valued subspace DOA estimation methods 
require the exact number of the incident sources to be 
known a priori or at least to be correctly estimated. 
However, classical information criteria, such as Akaike 
information criterion (AIC) and minimum description length 
(MDL), tend to give incorrect estimation of the number of 
sources underlying some practical scenarios, where the 
sample size is small and the signal-to-noise ratio (SNR) is 
low. On the other hand, the Capon beamformer [10], which 
fails to resolve two closely spaced signals within the 
Rayleigh cell, exhibits a great advantage that the 
information of the source number is no longer necessity. 

Additionally, the computational load cost by the exact 
singular value decomposition (SVD) or eigenvalue 
decomposition (EVD) is very expensive, which may 
prohibits the use of subspace algorithms in some 
applications. There exist some methods which estimate the 
signal or noise subspace without performing exact EVD. For 
instance, the projection approximation subspace tracking 
algorithm with deflation (PASTd) [11] and multi-stage 

Wiener filter (MSWF) [12] can estimate the needed 
subspace iteratively. Whereas, such efficient algorithms 
also suffer from determining the number of incident signals. 
Several subspace approximation methods introduced in [13] 
are different with those of [11] and [12]. They approximate 
the subspace by applying rational or power-like methods to 
the sample covariance matrix, and correspondingly develop 
some accurate subspace-based DOA estimators. In [14], a 
cascaded Capon beamformer termed as m-Capon is 
proposed so as to avoid exact EVD and sources number 
estimation. 

In this paper, concentrating on the receiving array with 
centro-Hermitian property, a new DOA estimating algorithm 
requiring only real operations is presented. The proposed 
method approximates the noise subspace using high order 
powers of the sample covariance matrix so that the costly 
EVD is avoided. This approximation method is simpler than 
those in [13], since no threshold is required to set. 
Compared with its complex counterpart m-Capon [14], the 
proposed method is computationally more efficient since it 
completely performs in the real domain. Moreover, the 
proposed method can handle pairwise correlated signals 
directly, while the m-Capon fails to work. The performance 
of the proposed method is demonstrated via numerical 
experiments, achieving high resolution comparable with that 
of unitary MUSIC. However, the proposed method is 
superior to the unitary MUSIC since the information of 
source number is no longer required. 

The remainder of the paper is organized as follows. In 
Section 2, after briefly describing the array signal model, the 
m-Capon method is reviewed. Section 3 presents the 
proposed method. Section 4 compares the computational 
complexity of the proposed method with those of some 
other algorithms. Section 5 carries out computer simulations 
to evaluate the performance of the proposed method. 
Finally, Section 6 concludes the whole paper.  
 
2 Background 

Consider K narrowband far-field sources from distinct 
directions impinge on a uniform linear array (ULA), 
consisting of L (L>K) sensors with inter-sensor spacing d. 
The received complex baseband data at time t can be 
represented by: 
(1) ( ) ( ) ( ) ( )  =1, 2, ,t t t t T y A θ s n  

where θ=[θ1,θ2,…,θK]T  is the DOAs to be estimated, y(t) is 
the complex magnitude vector of the arriving signals, which 
are assumed to be zero mean wide-sense stationary 
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stochastic processes, n(t) is a vector of the additive circular 
complex Gaussian white noise, which is uncorrelated with 
the signals, T is the number of snapshots, and (•)T stands 
for transpose. The columns of the L×K array manifold matrix 
A(θ) are referred to as array steering vectors with a(θk) 
corresponding to the direction θk, i.e., 

(2) 2 sin( ) / 2 ( 1)sin( ) /  ( ) 1, ,...,k k

Tj d j d L
k e e           a  

where λ represents the wavelength of incident signals. The 
array covariance matrix is given by: 

(3) 2{ ( ) ( )} ( ) ( )H H
y s n LE t t   R y y A θ R A θ I  

where Rs=E{s(t)sH(t)} denotes the signal covariance matrix, 

and 2
n  is the noise variance, IL stands for an L×L identity 

matrix, and the operator E{•}, (•)H denotes expectation and 
conjugate transpose, respectively. Under the assumption 
that the signals are uncorrelated with each other, the matrix 
Rs will be diagonal with the diagonal elements associated 
with the average power of incident signals. It is known that 

the minimum eigenvalue of Ry is equal to 2
n  with 

multiplicity L−K. The EVD of Ry performs the following form: 

(4) 2

1

L
H H H

y i i i s s s n n n
i
 


  R e e E Λ E E E  

where the diagonal matrix Λs=diag(γ1,γ2,…,γK) contains the K 
largest eigenvalues sorted in descending order, and the 
corresponding eigenvectors collected in the matrix Es 
constitute the signal subspace. Similarly, the matrix En 
contains the L-K eigenvectors that are associated with the 

eigenvalue 2
n , and is called the noise subspace. With (4), it 

is straightforward to get the following equation: 

(5) 2 'm m H H
n y s s s n n   R E Λ E E E  

where ' 2 2 2
1 2( / , / , , / )m m m m m m

s n n n Kdiag      Λ . It is 

clear that 2 2 2
1 2/ / / 1n n n K         , since 2

n is 

smaller than the signal eigenvalues. Then as m becomes 

larger, 2m m
n y R  will converge to the projector onto the 

noise subspace, as: 

(6) 2lim m m H
n y n n

m
 


R E E  

and the rate of convergence is asymptotically proportional 

to 2 /n K  . The significance of (6) is that it provides a way 

of estimating the noise subspace of the matrix Ry without 
computing exact EVD. Furthermore, it is important that the 
number of incident signals need not be estimated.  

In practice, the covariance matrix Ry is consistently 
estimated by the sample covariance matrix: 

(7) 
1

1ˆ
T

H
y t t

tT 
 R y y  

Based on (6), one gets the so-called m-Capon method 
[14], whose output spatial spectrum is: 

(8) 
1

1

1 1
( )

ˆ ˆ( ) ( ) ( ) ( )

m

H H m
i y y

P 
    


 

a R a a R a
 

The peaks of P(θ) indicate the directions of the incident 
sources. Ideally, the m-Capon DOA estimator coincides 
with the well-known MUSIC estimator when m approaches 
infinity. However, in practice, it is reported that relatively 
large m may provide satisfying results. 
 

3 Real-valued DOA estimation algorithm 
Determining the DOAs of incident signals by calculating 

(8) and searching the peaks of P(θ) requires complex 
operations. In this section, we present an improved and 
computationally more efficient algorithm only with real 
operations. 

The investigated ULA fits the centro-symmetric criterion 
obviously, since its elements are located symmetrically with 
respect to the centre. As a result, the theoretical covariance 
matrix Ry shows centro-Hermitian property when all the 
incident signals are mutually uncorrelated, that is: 

(9) y L y L
R J R J  

where JL represents the L×L permutation matrix with ones 
across its main anti-diagonal and zeros outside, and (•)* 
denotes complex conjugate. Practically, the sample version 
ˆ

yR  seldom holds this property due to finite samples effect 

and signal correlation. And this property is often enforced 
by means of forward-backward averaging: 

(10)  
2

ˆ ˆ ˆ( ) / 2

ˆ

FB y y

FB H
s n L

 

 

R R JR J

AR A I
 

The yielding ˆ
FBR  is a centro-Hermitian matrix and can be 

transformed into a real-valued matrix via a well-designed 
unitary matrix QL: 

(11)  ˆ ˆH
r L FB LR Q R Q  

It is necessary to mention that slight difference in the 
structure of QL arises between odd and even values of L. 
When L is even, QL is constructed as following: 

(12)  
' '

' '

        1

  2

L L
L

L L

j

j

 
   

I I
Q

J J
 

where L’=L/2. While for odd values of L, QL is defined as: 

(13)  

' '

' '

         
1

  2     
2

    

L L

T T
L

L L

j

j

 
 

  
   

I 0 I

Q 0 0

J 0 J

 

where L’=(L−1)/2 and 0=[0,0,…,0L’]
T. However, it is proved 

whether L is odd or even does not affect the final results, in 
this paper we assume L to be even for simplicity. We note 

that ˆ
rR  can be calculated directly based on the sample 

covariance matrix ˆ
yR  without forward-backward averaging, 

via: 

(14)  ˆ ˆRe[ ]H
r L y LR Q R Q  

here, Re[•] denotes the real part. Calculating ˆ
rR through (14) 

is simpler than using (11), but the computational complexity 
can be reduced even further by transforming the received 
complex snapshots into real ones before calculating the 

sample covariance matrix ˆ
yR . As stated in [4], we partition 

the snapshot vector y(t) at time t as: 

(15)  
( )

( )
( )

u

d

t
t

t

 
  
 

y
y

y
 

where both yu(t) and yd(t) are L'×1 vector. Consider a 
transformation  , such that: 

(16)  
* *

' '

* *
' '

Re{ ( ) ( )} Im{ ( ) ( )}
( ( ))

Im{ ( ) ( )} Re{ ( ) ( )}

u L d u L d

u L d u L d

t t t t
t

t t t t

   
 
   


y J y y J y

y
y J y y J y

 

where Im[•] denotes the imaginary part. It is seen that the 
transformed snapshot vector now only contains real 
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elements and the column is doubled. One can calculate the 

real covariance matrix ˆ
rR  by: 

(17)  
1

1ˆ ( ) ( )
2

T
H

r t t
tT 

   R y y  

Be careful that the number of snapshots now is doubled 

from T to 2T. Back to the ˆ
FBR , the EVD can be written as: 

(18)  2

1

ˆ
L

H H H
i i i s s s n n nB

i
F  


   v v V Γ V V VR  

As defined in section 2, the matrices Vs and Vn are referred 
to as the signal subspace and noise subspace, respectively. 
The diagonal matrix Γs contains the eigenvalues associated 

with signals. Based on (11), the inverse of ˆ m
rR is related 

with that of ˆ
FBR as: 

(19)  

2 2

'

'

ˆ ˆ

( )

( ) ( ) ( )( )

m m m H m
n r n L FB L

H H H
L s s s n n L

H H H H H H
L s s L s L n L n

  

 

 

R Q R Q

Q V Γ V V V Q

Q V Γ Q V Q V Q V

 

Where ' 2 2 2
1 2( / , / , , / )m m m m m m

s n n n Kdiag      Γ . 

Similar to (6), 2 ˆm m
n r R will converge to the real-valued 

noise subspace projector when m tends to infinity, 

since 2 2 2
1 2/ / / 1n n n K         , as: 

(20)  2 ˆlim ( )( )m m H H H
n r L n L n

m
 


R Q V Q V  

The conventional spatial spectrum of the MUSIC algorithm, 
using the forward-backward covariance matrix, is given by: 

(21)  
1

( )
( ) ( )n n

F H HBP 
 


V Va a

 

Simply using (20) and omitting the constant factor 2m
n , one 

can get the output spatial spectrum readily: 

(22)  
1

( )
ˆ( ) ( ) r H m

r

P 
 


a R a

 

where ( ) a  is the new steering vector, formulated as: 

(23)  ( ) ( ) H
L a Q a  

Since ( )a  is not centro-Hermitian, the resulting ( ) a  still 

lies in the complex domain after unitary transformation. We 
note that the main computational load is cost by searching 
the peaks of Pr(θ). Hence, the computational reduction will 
be not as significant as we expected. However, we find that: 

(24)  ( 1)sin /( ) ( ) j L d
r e      a a  

where: 

(25)  
( ) 2[cos( ( 1) sin / ), ,cos( sin / ),

                  sin( ( 1) sin / ), ,sin( sin / )]




r

T

L d d

L d d

      

     

 



a
 

Substituting (24) into (22), the output spatial spectrum now 
becomes: 

(26)  

r ( 1)sin / ( 1)sin /

1
( )

ˆ( ) ( )

1
ˆ( ) ( )

H j L d m j L d
r r r

H m
r r r

P
e e     

 

 

   







a R a

a R a

 

It is obvious that we can replace ( ) a  in (22) by ( )r a  

without affecting the spatial search function Pr(θ), just like 
the one did in [3]. Therefore, searching the peaks of the 

spatial spectrum requires real operations only. Comparing 
(8) with (26), it can be concluded that the m-Capon method 
performs as the complex counterpart of the proposed 
method. Likewise, we shall point out that the presented 
real-valued DOA estimator approaches the unitary MUSIC 
in ideal situation. 
 
4 Complexity analysis and summary of the proposed 
method 

In this section, the proposed real-valued DOA estimator, 
the unitary MUSIC [3], and the m-Capon [14] are compared 
in terms of computational complexity.  

We investigate the proposed method first. It can be seen 
that using (16) to transform the complex snapshots to real 
domain only involves real additions, and therefore the 
complexity can be neglected. The number of flops required 

to calculate ˆ
rR by (17) is 2TL2. The computational load of 

calculating ˆ m
rR rests with m clearly. Larger value of m 

theoretically provides a better approximation to the noise 
subspace at the cost of increased computational load. 
However, due to limited samples effect, simply using larger 
m may lead to adverse result. According to the simulation 
results, we set m=4, and therefore the computational cost is 

about 2L3. The inverse of ˆ m
rR  can be computed in 2L3/3 

flops. Jointly taking the spectral searching part into 
consideration, the total computational cost of the proposed 
method is about 2TL2+2L3/3+2L3+NL2 real flops, where N 
represents the length of the scanning spatial grid.  

For the unitary MUSIC, it requires TL2 complex flops to 
calculate the array covariance matrix, and 21L3+NL(L−K) 
real flops to compute the EVD and spatial spectrum.  

For the m-Capon method, based on (8), the overall 
computational cost is about TL2+2L3/3+2L3+NL2 complex 
flops, when the m is also set to 4.  

It is known that one complex flop is implemented by four 
real flops in practice. We therefore stress that the 
complexity of the proposed method is about four times 
lower than the m-Capon. For small number of signals, the 
proposed method has computational advantage over the 
unitary MUSIC.  

The implementation of the proposed method is 
summarized as follows. 

Step 1) Transform the complex samples to real via (16). 
Step 2) Approximate the noise subspace via (19). 
Step 3) Compute the spatial spectrum based on (26). 
 

5 Numerical simulations 
We carry out some numerical simulations to evaluate 

the performance of the proposed DOA estimator, and also 
compare it with respect to unitary MUSIC [3], Capon [10], 
and m-Capon [14] algorithms. We consider a 10-element 
ULA, where the sensors are separated by a half wavelength 
of the incident signals. Each narrowband signal is 
generated from a Gaussian distribution with zero mean, and 
we will investigate scenarios with both uncorrelated and 
pairwise correlated sources. The additive noise is assumed 
to be white, both temporally and spatially, and Gaussian 

distributed with zero mean and variance 2
n . We set the 

power order of the sample covariance matrix to 4 in all the 
simulations unless specially indicated. 

In the first simulation, three equal-power narrowband 
signals are assumed to impinge on the receiving array from 
the directions of −40°, −30° and 20°. We take SNR=0dB 
and T=100. It is supposed that the number of the sources is 
known exactly so that the unitary MUSIC algorithm works in 
its ideal situation.  
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Fig.1(a). Spatial spectra for uncorrelated sources at −40°, −30° and 
20°, T=100, SNR=0dB. 

 

  
Fig.1(b). Spatial spectra for two coherent sources at −40°and 20°, 
one uncorrelated source at −30°, T=100, SNR=0dB. 
 

Fig.1 shows the spatial spectra obtained by different 
algorithms under various conditions. In Fig.1 (a), we show 
the spatial spectrum plots when the signals are mutually 
uncorrelated. It is clearly illustrated that the Capon method 
merges the two closely spaced signals due to the Rayleigh 
resolution limit. At the same time, the m-Capon and the 
proposed method are able to distinguish the two as the 
unitary MUSIC dose. In Fig.1 (b), we show the results when 
the incident sources at −40° and 20° are coherent but 
uncorrelated with the one at −30°. Note that both the 
proposed method and unitary MUSIC succeed in clearly 
locating the sources, while the Capon and m-Capon fail to 
work without decorrelation procedure. 

In Fig.1, we have provided an intuitionistic comparison 
between the proposed method and other algorithms. To 
make the comparison more meaningful, we adopt the 
average root mean square error (RMSE) to evaluate the 
statistical DOA estimation performance, defined as: 

(27)  2

1 1

1 1 ˆRMSE ( )
K J

kj k
k jK J

 
 

    

where J=200 for Monte Carlo runs, θk denotes the actual 

arriving angle of the kth signal, while k̂j  represents the 

corresponding estimation in the jth trial. 
We investigate the impact of the snapshots and SNR on 

the RMSE performance of the proposed method and the 
other three. Three uncorrelated signals with identical SNR 
impinge on the array from −40°, −30° and 20°. First, we 
keep the SNR fixed at 5dB and vary the number of 

snapshots T. Fig.2 (a) illustrates the RMSE the DOA 
estimates against the number of snapshots. Then the 
number of snapshots is fixed, while the SNR varies. Fig.2 (b) 
shows the estimation RMSE against the SNR when the 
number of snapshots is kept fixed at 100. From Fig.2, we 
can conclude that the proposed method provides 
convincible performance in terms of the estimation RMSE 
underlying both small sample size and poor SNR scenarios. 
Among the tested methods, only unitary MUSIC performs 
slightly better at the cost of higher computational load when 
the number of incident signals is known exactly. 

 
Fig.2(a). RMSE of the DOA estimates versus the number of 
snapshots T with 5dB SNR. 
 

 
Fig.2(b). RMSE of the DOA estimates versus SNR with 100 
snapshots. 
 

 
Fig.3. RMSE of the DOA estimates versus the values of m and 
SNR with 100 snapshots. 
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Finally, we examine the impact of the values of m on the 
RMSE performance of the proposed method. The number 
of snapshots T=100 and the SNR varies from −10dB to 
15dB in a step of 5dB. We simulate two uncorrelated 
sources located at −40°and −30°. Fig.3 illustrates the 
estimation RMSE, obtained by the proposed method 
corresponding to different values of m, as a function of the 
SNR. It is observed that larger value of m performs better 
when the SNR is low, while smaller m works better when the 
SNR is relatively high. This validates that the choice of m=4, 
which provides satisfying performance in the whole SNR 
range, is reasonable. 

 
6 Conclusion 

In this paper, focusing on the receiving array with 
centro-Hermitian property, we propose a high resolution 
DOA estimation method which performs only real 
operations. Through theoretical analysis and numerical 
simulations, the estimation performance of the proposed 
method is confirmed to converge to that of unitary MUSIC 
asymptotically. However, there are two advantages of the 
proposed method compared with unitary MUSIC. First, 
which is more important, the proposed method does not 
require the knowledge of the number of incident signals. 
Second, the noise subspace is approximately estimated 
without calculating exact EVD. Compared with its complex 
counterpart m-Capon algorithm, the proposed method is 
computationally more efficient since it operates in real 
domain completely. Moreover, the proposed method can 
handle pairwise correlated signals while the m-Capon fails 
to work. Simulation results have demonstrated the validity 
and advantages of the proposed method. 
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