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Abstract. The application of variational principle combined with invariant approximation techniques to eddy currents computation has been 
discussed. The important advantages of the approach are, firstly, that it allows us to avoid the operation of differentiation of static characteristics of 
medium what usually results in poor convergence and, secondly, that obtained mathematical model preserves tensor character of initial equations. 
 
Streszczenie. W artykule zaproponowano zastosowanie metody wariacyjnej w połączeniu z aproksymacją niezmienniczą do symulacji rozpływu 
prądów wirowych. Zaletą takiego podejścia jest brak parametrów materiałowych w postaci otwartej w funkcjonale na magnetyczny potencjał 
wektorowy, co pozwoliło uniknąć operacji ich różniczkowania w procesie przekształcania otrzymanych równań całkowych w układ równań 
algebraicznych. (Obliczanie prądów wirowych w oparciu o metodę łączącą podejście wariacyjne z aproksymacją niezmienniczą) 
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Introduction 
 The operation of many electromagnetic devices 
depends on the circulation of eddy currents in their 
conducting parts and this is why the numerical solution of 
this problem has become an important research area during 
last decades [1, 2]. Eddy currents arise in conductive parts 
of electrical apparatus penetrated by alternating magnetic 
flux. As many other things in the world they can either 
cause damage (e.g. overheating, power losses) or be used 
in measure and inspection devices. The detection and 
measurements of the strength of the magnetic fields 
produced by the eddy currents makes it possible for us to 
learn things about conductive materials without even 
contacting them (e.g. to measure their thickness and 
conductivity). Eddy current is used in the nondestructive 
testing of ferromagnetic and non-ferromagnetic materials. 
The sensors based on the theory of eddy currents are very 
sensitive for the detection and analysis of gradual-type 
defects such as thinning, erosion, material characteristically 
changes (absolute probes) as well as of local defects such 
as corrosion, pitting, vibration damages, cracks (differential 
probes). The right detection may be crucial for human life 
safety, e. g. by aircraft engine disk inspection. 
 In our paper we propose an effective way of eddy 
current field simulation based on the combination of 
variation methodology with the technique of invariant 
approximations. 
 
Application of Variation Principle 
 The eddy current problem is obtained from Maxwell 
equations by assuming that the frequency is low enough as 
to neglect the electric displacement in Ampere's Law – so 
called quasistatic assumption [3]. In general case, the 
energetic functional developed [5] for electromagnetic field 
analysis (which corresponds to weak formulation of 
appropriate Maxwell’s equations) in a domain of the volume 
V  filled by anisotropic nonlinear non-homogenous 
hysteresis medium can be written in the form: 
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where: C  - a constant that depends only on initial and 
boundary conditions.  
 For the eddy current problem the following assumptions 
are in effect: 

(2)   0/  tD ; 0 . 

The second assumption was firstly used in [4]; in such case 
we are dealing with modified magnetic vector potential. In 
this particular case the form of the energetic functional is 
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Taking into account that electric field intensity tAE  /
, we can see that the first part of the functional (3) 
represents the energy of magnetic field and the second one 
represents the Joule’s losses. Thus, the requirement of 
minimization of this fuctional substantiated in [5] is 
consistent with the principle of least action. Therefore, 
solution of the eddy current problem coincides with the 
minimum of the functional 
(4)    

VV
c dVdVwW  ,  

where: w  - magnetic energy density;   - Joule’s losses 

density. 
 Applying formulae of vector analysis one obtains the 
variation of the functional (4) for magnetic vector potential 

variation A  in the following form 
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since A =0 on the boundary S  of the domain.  

 The minimum is found under the condition 0cW , i.e. 

JHrot  , because A  is arbitrary in all points of the 
domain. Hence the minimization of the energetic functional 
satisfies Ampere’s law for the eddy current problem. The 
method used for the minimization is finite elements method. 
 
Application of invariant approximations technique to 
construction of finite elements 
 The fundamental idea of the finite elements method [7] 
is to subdivide the domain to be studied into small 
subregions called finite elements (FE). In such way the 
energetic functional (4) is represented by the sum of 
separate integrals taken over every FE: 
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where: mV  - the volume of m -th finite element. 

 Unknown scalar or vector functions to be found are 
approximated in each finite element by simple functions 
called shape functions. A shape function is a continuous 
function defined over a single finite element. The shape 
functions of individual finite elements are combined into 
global shape functions, also called basis functions. There 
are nodal and edge elements that are utilized depending on 
the physical properties of a task. The technique of invariant 
approximations developed by Ukrainian scientist R. Filc [8] 
applied to finite elements method allows us to construct 
finite elements whose shape functions are invariant with 
respect to linear transformations of local and global 
coordinate frame. This technique states that the tensor 
character of Maxwell’s equations cannot be lost on the 
stage of their replacement by corresponding discrete 
analogues. Let us explain this requirement using a bilinear 
Lagrange rectangle shown in Fig. 1. 

 
Fig. 1. Bilinear Lagrange rectangular finite element. 
 
Within this element a scalar function U  is approximated as 
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where pN  is the nodal shape function corresponding to 

node p. When we substitute the formulae of the 
corresponding shape functions, we receive a general 
expression of the sought function in the form 
(8)  xyuyuxuuU 4321  . 

 Let us assume that the nodal values of the scalar 
function are 01 U ; 12 U ; 53 U ; 24 U  and find values 

of the function U  in the points 5 and 6 using two different 
coordinate frames shown in Fig. 2 and Fig. 3 and connected 
with each other by linear transformations (displacement and 
rotation).  

 
Fig. 2. The first coordinate frame used for approximation of function 
U in the points 5 and 6. 

 
Fig. 3. The second coordinate frame used for approximation of 
function U in the points 5 and 6. 
 
 The approximation of the sought function U  in different 
coordinate frames gives following results: 
1-st coordinate frame 2-nd coordinate frame 

15 U    8/315 U   

26 U    326 U  

For the point 5 the difference between the aproximated 
values calculated in two different coordinate frames is of 

22%; for the point 6 the difference is of 87%. One can see 
that approximation results depend on the chosen coordinate 
frame what is principally unacceptable because one of the 
most important requerements of scientific research is its 
objectivity.  
 The same dependence of approximation results on a 
chosen coordinate frame has been revealed for hexahedral 
finite elements (Fig. 4).  

 
Fig. 4. Hexahedral finite element. 

 
 That is why we have constructed finite elements and 
obtained the mathematical model of eddy-current problem 
in accordance with invariant approximation technique [6]. Its 
application allowed us to construct finite elements that  
      a) are invariant with respect to linear transformation of a 
coordinate frame; 
      b) automatically satisfy the boundary conditions on the 
edge of the part made of conducting material – so called 
surface FE. 
 
Mathematical model of eddy-current problem 
 After the domain’s subdivision into M invariant finite 
elements the energetic functional (6) can be written in the 
form: 
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where: P  - freedom degree of the m-th FE; mpq  - 

coefficients that depend only on the geometry of the m-th 
FE; mF  - the contribution of the m-th FE into the entire 

energetic functional.  
 In accordance with invariant approximations technique 
[6] the distribution of any unknown function and its 
differential operator within m-th finite element is represented 
by Taylor’s vector of appropriate degree that consists of P 
elements.  
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where: zyx AkAjAiA   - vector magnetic potential in 

any point within the m-th FE; T


 - Taylor’s vector for any 

point within the m-th FE; 1
mT  - inverse Taylor’s matrix of the 
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magnetic potential for the m-th FE; N  - Hamilton’s matrix; 
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representations of the same vectors. 
 Since the proposed algorithm requires two consequent 
differentiation operations we also use other representation 
of sought functions: 
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 Taking into account (11), (13) one obtains formulae for 
components of magnetic flux density in any point within the 
m-th finite element: 
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To find the minimum of the functional (9) we have to solve 
the following set of equations: 
(17)  0/  xc AW ; 0/  yc AW ; 0/  zc AW . 

The discrete form of the system (17) is as follows: 
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 Taking (3) and (9) into account, let us find the derivative 
of the contribution mF  of the m-th FE with respect to its 

nodal potentials in the form of column-vectors: 
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Analogically 
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 Since the node under global number k may correspond 
to different p numbers in adjacent FE-s, the full derivative 
comprises contributions from different FE-s.  
 The obtained nonlinear system is solved by means of 
Newton’s method that requires us to calculate Jacobi matrix 
during each iteration stage. To compute the contributions of 
every FE to the Jacobi matrix we need to perform the 
differentiation of the column-vectors mxm
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length. To find these derivatives we need to have the vector 
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 The derivative of vector magnetic potential with respect 
to time is represented by back-differentiation expression: 
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where: 0a  - a coefficient that depends on the order of the 

used back-differentiation formula; AC
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 - a constant for a 

given iteration stage that depends on the values of the 
potential on the previous stages and on the order of the 
used back-differentiation formula. 
 Utilizing (14)-(16), (23), (24) we obtain final formulae for 
contributions of the m-th FE to Jacobi matrix: 
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where: iimp , ijmp  are self and mutual specific magnetic 

reluctance in the p-th node of the m-th FE; iimp , ijmp  are 

self and mutual conductivity in the p-th node of the m-th FE; 
kji ,,  take in turn the meanings zyx ,,  and cannot be equal 

to each other. 
 
Features of the proposed approach 
 The main difference between the proposed variation 
approach and other known methodologies consists in the 
fact that our formulation does not use medium 
characteristics (permeability, conductivity) in explicit form 
what allows us to avoid the operation of their differentiation 
while solving the algebraic set of equations received in the 
process of numerical modelling. The minimization of the 
obtained functional has been conducted with application of 
differential parameters of the medium.  
 The second advantage of our approach consists in the 
application of technique of invariant approximations that 
guarantees the preservation of tensor character of 
Maxwell’s equations while constructing their numerical 
counterpart. This technique allows us to construct finite 
elements of any order of discretization order whose nodal 
shape functions are invariant with respect to linear 
transformations of local (and global) coordinate frames and 
which satisfy boundary conditions automatically.  
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