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Abstract. A new more accurate formula to calculate condition number of a matrix is proposed. The effectiveness of the new formula was confirmed 
by the examples of the Hilbert matrix. In order to validate the new approach comparison with statistical Monte Carlo calculation was used. 
 
Streszczenie. Opracowano nowy dokładniejszy wzór do obliczenia wskaźnika uwarunkowania macierzy. Skuteczność nowego wzoru potwierdzono 
na przykładach macierzy Hilberta. Dla sprawdzenia dokładności wzorów wykorzystano analizę Monte-Carlo. (Współczynnik uwarunkowania 
macierzy). 
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Introduction  
 As per [1], condition number of the square nonsingular 
matrix А of А·Х=В equation (SLAE) shows the magnitude of 
the error increase of the calculation of Х vector having the 
value of inaccuracy of B vector and inaccuracies of the 
entries of matrix A. More precisely, condition number shows 
the maximum relation of the inaccuracies of the solution 
vector X relative to the value of the relative inaccuracy of 
the vector B. Unlike the rounding error that is introduced by 
the numeric algorithm, condition number is an indicator of 
inaccuracies that are introduced by input data.   
 In the numeric methods of applied mathematics 
condition number is playing important role. Extended 
notation of the value of condition number is given in the 
form of the product of norm of original (||A||) and inverse 
(||A-1||) matrices or relationship of eigenvalues of matrix A. 
 

(1)               (A) = ||A||  ||A−1|| = |max| / |min|               
 

 The bigger value of (A), the bigger instabilities occur 
while solving SLAE. Let us note that eventually (1) is giving 
the possibility to estimate the top limitation of the 
inaccuracy. 
 The above belongs to the classic knowledge, which is 
described in different forms in the numeric methods 
textbooks. None less during the calculation of (1) different 
values are obtained due to the use of different norm. In 
table 1 the few examples of the calculation in MAPLE V5 
R4 of condition number (cond) of Hilbert matrices of rank 5, 
8, 12, 50 and 100 are shown. We have: |max/min|, condF 

(Frobenius’s norm) and condI (infinity norm).  
 

Table 1. Example one of condition number of Hilbert matrix 
H power max/min condF condI 

H55 10
4
 47.661.. 48.085.. 94.366..

H88 10
8
 152.58.. 154.94.. 338.73..

H1212 10
16

 1.7132.. 1.7518.. 4.1155..

H5050 10
71

 1422.9.. 1500.9.. 4330.3..

H100100 10
148

 * * * 405.37.. 1267.2..

* * * - very long CPU time 
 

 As we see above especially differ norm condF and 
condI. As rank of Hilbert matrix is increasing this difference 
is growing. The difference for matrix H100100 for condF and 
for condI is almost 3 times. The search for the choice of 
“the best” matrix norm has proven to be in vain…Obviously 
that it is preferable to choose the lowest value between 
different values of condition number. Therefore, the purpose 
of this work is to develop a more accurate formula for the 
condition number calculation. 
 

The alternative solution 
 The source for the derivation of the alternative formula is 
a known dependency of the standard variation of the 
function of many variables from standard variations of it 
variables [3]. Let у = f(x1, x2,…,xn). x1, x2, … , xn are 
given as well. Let us assume that variables and their 
derivations are independent. Then, after decomposition of 
function у into Taylor’s series and ignoring the members of 
the higher rang, we are getting the formula of the standard 
derivation of the y function: 
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 Let us assign: xі = xi xі,  where   xі is a standard 
relative deviation or the independent variable xi. Then (2) 
will look: 
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 In practice the standard deviations of the relative errors 
of all variables are the same, therefore, let x1 = x2...= x.  
Then (3) will become: 

(4)                  
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 Let us show (4) accordingly to the function у in the form 

detA as determinant of the nonsingular matrix А = [aij]nxn  

i, j = 1..n. where aij is a real or complex number 
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 From the products inside parenthetic we will create 
square matrix C with elements cij = Mijai j, where Mij is 

corresponding minor of the matrix А. The sign of the minor 
is irrelevant here as later during the calculation of the norm 
the signs of the squares are always positive. Now let us 
rewrite (5), using matrix C. 
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where ||C||F is the Fresenius’s norm of the matrix C. 
 For the clarity sake of the explanation of (A) the 
formula for the estimation of the lost decimal digits of 
mantissa during the evaluation of the determinant of matrix 
А of arbitrary method [2] is used 
 

(7)                                    L = log10((A)) ,  
 

 where L means the number of younger decimal digits of 
the mantissa of the determinant, that during its calculation 
become inaccurate. It is assumed that before the 
calculation of the determinant all md digits of mantissa of 
the matrix coefficients are exact x = 10

-md
. Obviously, that 

after the calculation of the determinant the number of the 
accurate digits Q of mantissa is 
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 Having matrix C, using the same way as in (7) we can 
determine the quantity of the lost digits during the 
calculation of the determinant of the arbitrary nonsingular 
square matrix А.  
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and from (7) we obtain 

(9)                         
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 Table 2 contains comparison of the results of the 
calculations of condition number of the Hilbert matrices 
using: |max| / |min|, identify norm (condI), (condT) from (9) 
and with Monte-Carlo calculation (condS). As we see, the 
values of condI and condT significantly differ. 
 

Table 2. Second example of condition number of Hilbert matrix 
Hilbert’s 
matrix 

power |max/min| 

(MAPLE) 
condI 

(MAPLE) 
condT 

(MAPLE) 
condS 

(DELPHI)
Lost* 

H55 10
4
 47.661.. 94.366.. 4.6781.. 4.6809.. 4.67 

H88 10
8
 152.58.. 338.73.. 8.3703.. 8.3726.. 8.923..

H1212 10
14

 171.32.. 411.55.. 5.6787.. 5.8304.. 14.754

H5050 10
71

 1422.9.. 4330.3.. 9.7697.. * * 71.99 

H100100 10
148

 * * * 1267.2.. 1.2283.. * * 148.09
* - from condT, 
** - short mantissa in Turbo DELPHI. 
 
 The “Lost” column shows the quantity of lost decimal 
digit numbers of mantissa during the determinant 
calculation as given by MAPLE software. As we see for 
matrix Н50х50 at the minimum 8010 - digits arithmetics is 
required. Н100х100 requires 16010 digits. The usage of 
extended precision in Turbo DELPHI allows precise 
calculation of the determinant Hilbert’s matrix up to n =12.  
 
Computer experiments  
 In order to verify adequate (closest to the exact) value of 
the condition number it is necessary to choose a referee, in 
other words method of calculating of the condition number, 
reliability and truthfulness of which is absolute. Such a 
referee can be found in the method of multivariate 
calculations based on statistical approach [3]. Obviously the 

“worse” the matrix is - the bigger is the standard derivation 
of determinant. 
 In order to implement Monte-Carlo method here it is 
necessary to choose the model of the discrete density of 
the random values distribution of matrix elements. Let us 
use the normal distribution of those values. The calculation 
of the mode and standard deviation will be done accordingly 
to the classic formulae [3]. Due to the unsatisfactory quality 
of the standard generator of the normal random numbers 
that was found in included library of the DELPHI software 
the author has developed generator with better quality. The 
main idea of the design of the better generator is based on 
optimization of the limited quantity (750106) of generated 
numbers. Those numbers obtained from a standard 
generator of uniform distributed numbers and discrete 
values of inverted cumulative distribution of normal 
numbers. The verification of the generator quality is based 
on the analysis of the random values and histogram of the 
density of the distribution (asymmetry, excess and 2).   
 As example we choose above mentioned Hilbert matrix 
Н with elements h i j = 1/(i+j-1) i,j = 1..n. The calculation of ill 
conditioned Hilbert matrix is an accepted test of the 
numerical methods as of today [2]. The experiments were 
done with the help of custom developed by author software 
using PASCAL language in Turbo-DELPHI environment, 
and also with analytical program MAPLE V5 R4. 
Calculations of determinant in PASCAL were made using 
the maximum precision extended (2210 digits). Calculation 
of every determinant was made by the known formula of 
Gauss reduction [1] 
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 which allows bringing the triangular matrix, determinant 
of which is the multiplication of its diagonal elements. Pivot-
element was not selected.  
 After many tries the quantity of the variants of the 
calculations was chosen to be 1 million. In every calculation 
of the determinant matrix elements have got the discrete 
value accordingly to the normal distribution in 3 range. In 
the mantissa of the matrix elements the change was 
occurring from 15th position (md = 15), i.e.  аij = 10-md. Due 
to the above precautions the negative influence of rounding 
errors on the results of statistical experiments was avoided. 
 As the first step 106 variants were calculated using the 
Monte-Carlo method. This was done to get the range of the 
determinant values (from hmin till hmax), and also the closer 
to the exact value that was previously determined with 
MAPLE. As the second step the same 106 determinants 
were calculated to get histogram with 21 columns (Fig. 1).  

 
 
Fig. 1. An example of histogram for det H12x12 
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     As the third step analysis of the histogram in order to 
calculate both the mode of determinant value (det A) and 
derivation of determinant () was done. On Fig 1 whole 
numbers to the left of histograms show the quantity of the 
determinant values in the certain range (1 - 21) from hmin till 
hmax. Q12 mean the numbers of the reliable digits of 
determinant mantissa. Dnom represents exact value of the 
determinant (from MAPLE), DetS – mode of the 
determinant. Below we can see (asym) the value of the 
coefficient of the histogram asymmetry calculated as the 
ratio of the sum of heights of left columns to the sum of the 
right columns (in percents). Let us note that without using 
the improved generator of normal numbers histograms were 
noticeably asymmetrical. The column of condS in table 2 
was obtained after appropriate histogram analysis.   
 From the Monte-Carlo calculations we obtain following 
formula for calculating of the condition number of matrix 
 

Qmd10condS

  
where  Q = log10 (|detA| / 3). 

 

 After Monte-Carlo experiments we can see that condS 
from table 2 is almost the same as the condТ. This is a 
reliable proof of the advantage of the proposed new formula 
(9) of the calculation of condition number of matrix. 
Calculation abilities of the numeric processor have limited 
multivariate research in PASCAL of the Hilbert matrix to 12th 
order.  
 The new formula (9) (condT) is universal and is suitable 
for the calculation of condition number of matrix for any 
square nonsingular matrix. Here are two matrices A1 and 
A2.  
 

 1 2 3  3 2 1 
A1= 7 5 4 A2= 7 510

5
 4 

 9 8 6  9 8 6 
  
 Table 3 shows the results of calculations of the condition 
numbers.  
 
Table 3. The condition number for the matrix A1 and A2 

matrix det |max|/ |min| 
(MAPLE) 

condF 
(MAPLE) 

condT  
(MAPLE) 

condS 
(DELPHI)

A1 19 14.326.. 31.602.. 11.325.. 11.346.. 
A2 4.510

6 4.36310
5
 6.26110

5
   3.317..   3.279.. 

  
 The observation of Table 3 reveals that the condition 
number of the matrix calculated according by the classical 
formula (1) differs significantly from the condition number 
obtained from the new formula of condT (9). The correct 
value of condT confirmed by Monte-Carlo calculation 
(condS). 
 
Comparison of algorithms for the calculation of 
the determinant  
 By means of computer experiments the accuracy of the 
calculation of determinant using formula (10) and classic 
permutation by Leibnitz formula (11) without divisions were 
compared 

 
(11)     det A = ∑(-1)Inv(k)a1, k1...an, kn .  ki  kj; i, j, k(wi), k(wj)  {1..n}.    
 
 It was observed that popular statement about the 
advantage in accuracy of symbolic methods based on 

usage of the formulas without divisions (11) over formula 
with divisions like (10) is not always true. It is sufficient to 
look at experimental calculations of the determinant of 
matrices Н5х5 - Н7х7, shown in Table 4. It turns out that 
«precise» formula (11) posse many of the same digits, 
highlighted with bold font. That is why in case of ill 
conditioned Hilbert’s matrices using extended precision is 
not possible to satisfactory calculating of the determinant of 
the matrix for n > 6. 
 

Table 4. Positive and negative components of determinant of 
Hilbert matrices according to (11) 

+3.41251094831671646.. e-02
–3.41251094794178694.. e-02

detH5x5 = 3.7492951180783523..  e-12
    +1.57016575114036218.. e-02
    –1.57016575114036160.. e-02

detH6x6 = 5.3752710832757899..  e-18
+7.1215692969469809.. e-03
–7.1215692969469809.. e-03

                    detH7x7 =  0 !!! 
 

 Let us compare the results of calculations of the same 
determinants using Gauss formula (10) (Table 5). 
 

Table 5. Comparison of the Hilbert’s matrix determinant: exact 
values (MAPLE) and in DELPHI calculated 

 detH5x5 
MAPLE 3.749295132515087..e-12 
DELPHI 3.749295132515086..e-12 

 detH6x6 
MAPLE 5.367299887358688..e-18 
DELPHI 5.367299887358365..e-18 

 detH7x7 
MAPLE 4.835802623926117..e-25 
DELPHI 4.835802623926110..e-25 

 
 Table 5 contains exact values of the determinants, 
calculated by (10) in MAPLE and in DELPHI (PASCAL) 
using extended precision. 
  
Conclusions  
 The new formula (9) for the calculation of condition 
number of matrix using the product of values of the every 
entry of the matrix A on its minor was developed. Obtained 
values of condition number are more accurate comparing to 
classic values. The accuracy of the new formula was 
proven with the Monte-Carlo method. The convenience of 
the usage as value of inaccuracy the number of lost 
(inaccurate) digits of mantissa (L) versa condition number 
matrix (A) was shown as added benefit.  
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