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Abstract. An optimal power flow (OPF) with discrete variables is a non-convex, nonlinear combinatorial problem. Usually the discrete variables 
present in an OPF are treated as continuous variables. The solution obtained using this method is clearly infeasible, but it is considered to be close 
to the discrete real solution and can be attained easily without producing an excessive degradation in optimality.  These hypotheses can easily be 
refuted by demonstrating the need for a more robust general mechanism for treating the discrete variables in the OPF.  Finding the exact solution is 
intractable due to the high computing cost it requires--this fact causes the heuristic techniques to be seen as a natural way to obtain good solutions 
quickly. This article presents an algorithm based on a branch and bound technique that, with the help of the parallel computing power a personal 
computer (PC) provides, allows pseudo-optimal solutions to be attained with good calculating times.  The numerical results obtained by applying the 
technique proposed in IEEE networks of 118 and 300 nodes and a real size network derived from the Spanish transport network, demonstrate that 
the algorithm proposed has good execution times, provides solutions close to the optimum, and naturally manages the infeasibilities that are 
produced during the process.  
 

Streszczenie. Obliczenie optymalnego rozpływu mocy dla zmiennych dyskretnych jest problemem nieliniowym kombinacyjnym. Zwykle zakłada się, 
że zmienne dyskretne są traktowane jak zmienne ciągłe. Ta metoda uniemożliwia uzyskanie dokładnego wyniku w akceptowalnym czasie. Stąd 
powstało wiele technik heurystycznych, umożliwiających szybkie uzyskanie wyniku o dobrej dokładności. W artykule zaprezentowano algorytm na 
podstawie techniki podziału i ograniczeń, która, przy zastosowaniu obliczeń równoległych w nowoczesnych komputerach PC, pozwala na szybkie 
uzyskanie wyniku sub-optymalnego. Algorytm zastosowano do obliczeń sieci IEEE o 118 I 300 węzłach oraz rzeczywistej sieci, uzyskując krótkie 
czasy obliczeń i wyniki bliskie optymalnym. (Algorytm równoległy podziału i ograniczeń ze zmiennymi dyskretnymi do obliczeń optymalnego 
rozpływu mocy) 
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Introduction 

Despite the major developments experienced in solving 
OPF problems since its inception [1]  it still presents some 
challenges [2], one of which is treating naturally discrete 
variables associated with the modeling of the elements that 
make up the network, such as the positions of the taps in 
the transformers and the connection/disconnection of 
reactances. 

The existence of discrete control variables converts an 
OPF into a nonlinear mixed integer combinatorial 
optimization problem.  In this type of problem the search for 
the optimal solution is usually discarded in favor of looking 
for solutions close to the optimum, except in very small 
cases with little practical use, far from the sizes of the 
problems that are posed in real networks. 

The algorithms most used to solve this problem type are 
heuristic in nature, and the fastest, and possibly the most 
widespread method for trying to find a solution to a problem 
with discrete variables consists of solving the OPF 
assuming all variables are continuous (COPF), and 
rounding them off to their nearest discrete values. This is 
the simplest and fastest method, which is why it should 
surely be the first test done on any other algorithm designed 
to solve discrete OPFs (DOPF). 

Nevertheless, rounding off the variables can fail for two 
reasons: it can significantly degrade the result's optimality 
or be infeasible due to the combination of values assigned 
after rounding. For this reason, after its application, the 
values obtained must be checked to ensure they provide a 
feasible solution and sufficient optimality.  

A slight loss in optimality can be accepted due to the 
impossibility of finding the global optimum when the number 
of discrete variables is high, or if the objective function is 
too flat-shaped near the optimum. To the contrary, 
infeasibility is a serious problem and it is necessary to 
provide a robust mechanism to the process of assigning 
values to the discrete variables, which allows a quasi-
optimal feasible solution to be found. This need has 
fostered the publication of various algorithms which try to 
cover this aspect. 

The method that is proposed in [3] is a rounding off step 
application.  First, an OPF is solved with all the continuous 
variables.  Next, a set of variables close to a discrete value 
is chosen, and they are rounded off to that position.  With 
that set of variables already fixed, an OPF is executed 
again and the process is repeated again until there are no 
continuous variables left to be assigned. 

The authors of [4] use a method for assigning the 
discrete variables based on a probability function definition 
of the interval defined by the discrete values immediately 
less than and greater than the value obtained as a solution 
of a COPF.  First, the variables closest to the ends are 
assigned and then in subsequent iterations, the ones 
furthest from the ends are assigned.  Only the shunts are 
considered as discrete variables. 

In [5] they propose an algorithm where terms are added 
in the cost function that penalize the variables for their 
divergence from the discrete values.  In other words, if cx is 

the value of an x  variable obtained as a result of a COPF, 

and ix  is one of the discrete values, an 2( )c iM x x  term 

is added to the cost function, where M is a penalty factor.  
 In [6] and [7] algorithms based on ordinal optimization 
are presented.  In the former, comparative computational 
effort values can be found among different heuristic 
techniques.  In the latter, the algorithm divides the network 
into areas and then the ordinal optimization is applied to 
each one of those areas.  Other techniques used are based 
on the sensitivity analysis [8] or on the cutting plane method 
applied to interior point algorithms [9]. 

In all the cases there is an obvious concern that exists 
over the capacity of the various methods to solve problems 
with an elevated number of binary variables, since the 
computing effort needed increases exponentially. 

This article presents an algorithm to solve an optimal 
power flow problem with discrete variables. This algorithm 
is based on an enumeration process which uses a binary 
tree whose nodes are associated with subproblems 
constrained to continuous variables (COPF). This process 
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is similar to a branch and bound (B&B) technique used to 
solve mixed-integer linear problems. 

The most relevant aspects of this algorithm are: a 
strategy which allows managing the infeasible subproblems 
in a robust manner and a parallel implementation that 
allows accelerating the search when executing various 
COPF simultaneously in multiple core processors.  
 
Optimal Power Flow Problem 

An OPF with discrete variables can be written in the 
following manner: 

,min ( , )

( , ) 0

( , )

c d f c d

g c d

h h c d h


 

 

where  
 f(c,d) is the objective function to be minimized that can 

be the minimization of losses, generation costs, etc. 
 g(c,d) are the nodal equations of the network. 
 h(c,d) are functions that represent constraints on the 

network variables. 

 h  and h  are the minimum and maximum limits of the 

constraints.  
 c and d are the continuous and discrete variable 

vectors, respectively. 
 
Parallel Branch and Bound Algorithm 

To obtain OPF optimal solutions with discrete variables, 
it is proposed that a classic branch and bound (B&B) 
algorithm be used. In this method the search process is 
organized structurally in the form of a binary tree, where 
every one of its nodes represents an OPF in which all the 
discrete variables are relaxed and treated as continuous 
variables (COPF).  The nodes are generated from the root 
node, adding constraints on the discrete variables. Each 
COPF is solved using the multiple centralities interior point 
algorithm by Gondzio [10,11]. 

Let x be any component of the discrete variable vector 
c, constrained to the discrete values { / 1,... ( )}ix i n x  

where ( )n x  is the number of discrete values allowed by x , 

1i ix x  , and cx  its value corresponding to the optimal 

solution obtained in the COPF associated with a node in the 
B&B tree. If 1i c ix x x   , is satisfied, the solution obtained 

is not feasible. In this case, two optimization problems 
derived from the executed COPF are built, adding the 
constraint ix x  to one, and 1ix x   to the other. These 

optimization problems are associated with two child nodes 
from the previous node. 

Next, the COPFs corresponding to the two new nodes 
generated, are executed.  Using a heuristic rule, one of the 
two is selected, and the algorithm searches again for 
another discrete variable x  in its solution so that cx is 

infeasible. Once it has been obtained, the process of 
bounding and generating new nodes is repeated. 

A new solution to the problem is obtained when in one 
node, all the discrete variables take a feasible value.  Once 
this has been achieved, its cost serves to prune the 
branches of the tree in the event one wants to continue 
searching for new solutions. 

The B&B algorithm is a method that suffers from the so-
called curse of dimensionality.  For this reason, the 
objective of the algorithm proposed is not to obtain the 
optimal solution to the problem, but rather to obtain a 
solution which can satisfy a certain optimality criterion. To 

overcome this difficulty, we propose resorting to two 
strategies: 
 Using heuristic techniques to guide the variable 

selection process in the B&B tree toward a pseudo-
optimal solution as quickly as possible. 

 Using parallel computing to simultaneously evaluate 
multiple nodes of the tree. 

Various methods exist for selecting the next node to 
continue going deeper in the tree and for selecting the 
variables to bound [12]. In the algorithm proposed, the node 
chosen as the next one to go deeper in the tree, is the node 
with the lowest cost among the nodes that have just been 
executed.  And to choose the infeasible variables to bound 
and generate new nodes, two methods are used: 
 Simultaneous selection of fn  infeasible variables. 

 Selection of rn  infeasible variables whose COPF ( cx ) 

result is close (Tol) to some discrete value.  
2 2( )i cx x Tol   
 

Selection of fn  Simultaneous Variables 

The largest possible number of fn  variables is chosen 

so that 2 fn
 is less than the number of computing cores. 

Ideally, 2 fn
 would be equal to the number of ( cn ) cores so 

as not to underutilize the computing resources, but this is 
not always possible if the number of cores is not a power of 
2. Nor is it desirable to generate more tasks than cores 
since a multitasking environment distributes the processing 
time in a CPU among various tasks, producing context 
switch, which decreases performance. 

Each nonfeasible discrete variable generates two new 
derived subproblems, obtained as a result of dividing the 
original feasible interval of the variable [ , ]x x  into two 

subintervals: [ , ]ix x  and 1[ , ]ix x .  In each subproblem the 

variable is constrained to each one of the two previous 
intervals, thus eliminating the infeasible solution cx   and all 

the others included in 1( , )i ix x  . This process generates two 

new child nodes in the B&B tree, associated with the new 
constrained subproblems. 

Fig. 1. Divison of the space after the bounding of one and two 
variables 

 
Figure 1 show how the division of the feasible region of 

an x variable generates two unconnected regions and the 
division of the two variables ( , )x y  generates four. In 

general, the simultaneous selection of fn variables 

generates 2 fn
 unconnected regions with their 

corresponding nodes in the binary tree (Fig. 2). 
If all the nodes can be executed parallely, a better 

exploration of the solutions space can be attained in 
practically the same execution time as a COPF. 
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Fig. 2. Nodes generated by the simultaneous selection of two 
variables 

 
The selection of the fn  infeasible discrete control 

variables is realized taking into account the following order 
of preference: 
 First, those control variables close to their working limits 
are identified, for which some threshold value of proximity is 
defined, and then those infeasible discrete control variables 
whose variation has a greater effect on the control 
variables, are chosen. For example, if the voltage in a node 
is close to its limits, the infeasible discrete variables 
associated with the transformer taps and the connection of 
the shunts directly connected to that node, will be selected. 
The aim is to truncate the infeasible subtrees of the B&B 
tree as soon as possible. 
 If with the previous step the fn  variables being sought 

are not obtained, more variables are selected depending on 
the distance of the continuous solution ( cx ) to the center of 

the interval where that value is located 1)( i c ix x x   .  

First, those variables whose continuous value's distance 
from the center of the interval is less than a certain 
percentage (p%) of the interval's length, are chosen. If the 
number of chosen variables is not sufficient, the value (p\%) 
is slowly increased until the desired number of variables is 
attained. 

 
Selection of rn Variables by Rounding Off 

 Let n  be a node of the B&B tree.  The solution of the 
COPF associated with said node can contain values of 
infeasible discrete variables.  In other words, the values of 
these variables do not coincide with any of the allowed 
discrete values. Once a method of proximity ( )Tol  is 

established, the NS  set comprised of the infeasible 
discrete variables “close” to an allowed discrete value is 
defined, in the following manner: 

 2/ ( )i cNS z X z z Tol     

 The simplest and quickest alternative of trying to attain a 
feasible solution consists of establishing the value of the 
variables of NS  to its closest permissible discrete variable 
and executing the COPF again. The objective function 
probably will not vary significantly from the initial COPF. 
This procedure is one of the most usual, and conceptually it 
is the one that follows, for example, in the reference [3]. 
 Nevertheless, if it were not possible to find a feasible 
solution after rounding off, there is not another mechanism 
available capable of eliminating the cause of infeasibility.  
 This article proposes a methodology similar to the one 
above, but with the advantage of providing a robust 
mechanism for managing the infeasible subproblems.   
 From an n  node of the B&B tree, a new subtree is 
created like the one described in the following steps:  

1. Initially the n  node is marked as the selected node. 
2. A z  variable is chosen from the NS  set. 
3. Two child nodes, associated with the two continuous 

subproblems are added to the selected node. The 

iz z  constraint is added to the first child node and 

the 1iz z   constraint is added to the second child 

node. 
4. The first of these is defined as new selected node if 

1( ) ( )i iz z z z   , otherwise  the selected node will 

be the second child. 
5. If unselected variables remain from the NS set, the 

process repeats from step 2. 
 The last selected node is associated with a COPF 
subproblem which differs from one which would be obtained 
using a simple rounding off, in that the added constraints 
are unequal, limiting each variable instead of assigning it a 
fixed value. 
 This approach presents several advantages: 
 It provides a mechanism for managing infeasible 
subproblems. If a solution does not exist for a COPF, it can 
continue exploring the solutions space in a methodical 
manner, traversing the B&B tree. 
 The variables, except at the ends of the interval, do not 
set a discrete value; the variable interval is only bound. This 
allows for a certain degree of freedom to obtain better 
solutions and avoid infeasibilities 
 As the variables are selected and bound, the 
subproblem is modified more with respect to the original 
COPF (associated with an n  node), which is why it is 
advisable to set a maximum number of variables to be 
selected in this step.  
 With this selection method the intent is to set the value 
of the rn variables indirectly. For this reason, when the 

number of selected variables is less than the maximum 
number of variables that can be selected simultaneously, 
this method provides no advantage over the simultaneous 
selection, and in this case, is discarded. 
 
Construction of Subtree f rn n  

 Fig. 3 shows an example of two variables selected by 
rounding off ( , )x y  and two others using the multiple 

selection method ( , )s z .    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 Subtree created with the selection of the variables 
 



50                                                                              PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 3a/2013 

 The continuous values ( ),c cx y  of variables ( , )x y  are 

close to the discrete values ix  and  1iy  . The selection of 

these two variables as rounded off variables generates the 
BBS  subtree which includes the node FNB . The 
constraints that bound the region of space closest to the 
point ( ),c cx y  are contained in that node and if the 

associated COPF is executed it is likely that the new values 
of the variables ( , )x y  will be located on its limits 1)( ,i ix y  . 

 Once the construction of the subtree with all the 
variables of the NS  set is complete, simultaneous  fn  
variables are selected which are different from the previous 
ones (as is explained in previous sections) and a new 
subtree is built from node FSB . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4 Flow chart of the main algorithm steps for creating search 
tree nodes 
 
Implementation 
 Figure 4 shows the flow chart from the algorithm's 
implementation. The algorithm begins executing a COPF 
with all the continuous variables and assigning this problem 
to the tree root.  Next the main loop of the algorithm is 
executed, which is comprised of the following parts: 
1.  If the number of infeasible discrete variables ( )vn is 

greater than fn ,  ,r v fmin n n n  rounded off variables are 

selected. Otherwise, no rounded off variables are selected. 
2.  Starting from the last selected node generated in the 
previous step, or from the initial node if no rounded off 
variables were able to be selected, the subtree nodes 

associated with simultaneous variables  ,v fmin n n  are 

built. If v fn n  and some cores remain idle, new 

subproblems from the nodes with lower cost infeasible 
variables are selected from the whole tree. In this case only 
two subproblems will be generated for each node, 
constraining only one variable. 
3.  The COPFs of all of the additional nodes generated are 
executed parallely.  

4.  If among the nodes executed, there is a feasible 
discrete solution that satisfies the optimality requisites, the 
algorithm ends.  Otherwise, a new node is selected among 
those already executed, and the algorithm returns to step 1.
 As feasible solutions are obtained from the DOPF 
problem, the upper bound of the global optimum is 
obtained.  Given that the COPF problems are not convex, 
there is no guarantee that the interior point algorithm used 
will obtain a global optimum.  Accordingly, it cannot be 
guaranteed that the cost of the solution obtained from the 
COPF associated with a B&B tree node constitutes a lower 
bound of the constrained problems located downstream.  
Nevertheless, it is assumed to be a reasonable lower 
bound.  Therefore, it is possible to narrow the gap between 
the optimal solution and the last feasible solution found. 
 
Numerical Case Studies 
 The OPF used in this article is programmed by the 
authors in C++ using the compiler Microsoft Visual Studio 
2008 with Intel's MKL libraries.  The maximum permissible 
error in the OPF is 1E-6 for all of the cases and the 
maximum number of iterations allowed is 30.  The hardware 
used is a machine with two Intel Xeon E5440 processors, 
each with a quad core and 16GB of main memory.  The 
operating system is Windows Server 2008 SP2.  
 
Test Systems and OPF Problems Descriptions 
 To check the efficiency of the methodology proposed, 
various numerical experiences will be carried out on the 
IEEE networks of 118 and 300 nodes and on a network of 
1415 nodes, based on the Spanish transport network.  The 
minimizing functions are the losses (IEEE networks and the 
network based on the Spanish transport network) and the 
minimization of the generation costs (IEEE networks).  All 
the cases are run on a different number of cores to check 
the scalability of the algorithm before the increase in the 
parallel computing power.  
 In the networks of 118 and 300 nodes, all of the 
transformation relations of the voltage regulating 
transformers are considered as variables limited to the 
interval [0.9, 1.1]. In the network of 300 nodes, the total 
number of module transformers now becomes 106 versus 
the original 400 and in the network of 118 nodes there is a 
total of 9 regulating transformers.  In the two cases the 
number of taps considered is 21, which provides a step of 
0.01 p.u. 
 In the network of 118 nodes, 50 shunts have been 
added, whose location and associated data have been 
extracted from reference [4].  In the network of 300 nodes 
14 shunts have been added, whose values and positions 
have been extracted from [8]. In the two networks the 
voltages of the nodes are limited between the values [0.9, 
1.1].  
 The data from the generators, costs and values of the 
maximum and minimum powers, for the IEEE-300 network 
are extracted from reference [8]. The data of all the 
networks has been made public in [13]. To the REEB-1415 
network, the additional constraint that all the generators 
present in a same node must meet the condition of 
generating the same reactive power in values per unit has 
been added. 
 A summary of each network's main parameters is 
shown in table 1. In this table bn , l , t , g , s , vc  and vd  

are the number of buses, lines, transformers, generators, 
shunts, number of continuous control variables and number 
of discrete control variables, respectively.   
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Table 1. Test Systems Summary 

System bn  l  t  g  s  vc  vd  

IEEE 
118 

118 177 9 54 50 72 59 

IEEE 
300 

300 375 106 69 14 133 120 

REEB 
1415 

1415 1549 411 304 81 608 492 

 
 In the result tables the number of variables fn (Vars) 

simultaneously selected, the number of cores used in the 
execution, the lower bound obtained from the solution of the  
COPFs (Min), the cost of the best solution found (Opt), the 
error committed ( ( ) / *100)Gap Opt Min Min  and the 

time consumed, are shown. In every case the maximum 
number of variables selectable by rounding off ( )rn is 10 

and the percentage value of tolerance for its selection (%p) 
is 10%.    
 
Table 2. Results of IEEE-118 Minimun Cost Test Case 

Vars Cores Costs ($) Gap % Time(ms) 
  Min. Opt.   

1 2 13.4527 13.4547 0.0144 548 
2 4 13.4529 13.4547 0.0133 309 
3 8 13.4529 13.4546 0.0124 290 

 
Table 3. Results of IEEE-118 Minimum Losses Test Case 

Vars Cores Losses(MW) Gap % Time(ms) 
  Min. Opt.   

1 2 93.567 93.896 0.3512 652 
2 4 93.206 93.887 0.3045 315 
3 8 93.655 93.882 0.2421 284 

 
 Tables 2 and 3 show the execution times and results of 
minimizing the functions of losses and costs using different 
numbers of cores for solving them. In every case the totality 
of the cores available are assigned to the search for 
solutions. As one can see, the times obtained are lower as 
we increase the number of cores assigned in the execution. 
 
Table 4. Results of IEEE-300 Minimum Losses Test Case 
Vars Cores Losses(MW) Gap % Time(s) 
  Min. Opt.   
1 2 198.7269 199.0452 0.1647 4.8 
2 4 198.7466 199.0555 0.1554 2.9 
3 8 198.7271 199.1630 0.2193 2.2 
 
Table 5. Results IEEE-300 Minimun Cost Test Case 

Vars Cores Costs ($) Gap % Time(s) 
  Min. Opt.   

1 2 795.0745 798.2378 0.3978 4.9 
2 4 795.0745 798.2118 0.3945 3.1 
3 8 795.0745 798.3300 0.1579 2.5 

 
Table 6. Minimum Power Losses with Discrete Trafos and Shunts 

 
Table 7. Minimum Power Losses With Only Discrete Shunts 

Vars Cores Losses(MW) Gap % Time(s) 
  Min. Opt.   

1 2 710.346 751.826 0.145 12.1 
2 4 743.286 752.066 0.030 7.1 
3 8 712.556 750.696 0.133 6.9 

 
 

 Tables 4 and 5 show the results obtained by the 
algorithm in the IEEE 300 network, with a total of 120 
discrete variables. 
 The REEB-1415 network has a total de 492 discrete 
variables between the transformers (411) and the shunts 
(81). The minimizing function has been limited to the losses 
in the network. Table 6 shows the results of the system, 
which considers only the shunts as discrete. Table 7 shows 
the times and the results, taking into account the 
transformers and the shunts. 

Systems with a Number of Cores Different from 2 fn
 

 In cases where it is not possible to select a number of 

fn  variables which satisfies the relationship 2 fncores  , 

the remaining idle cores can be used to limit the minimal 
cost of the problem. The procedure is the following: 
1.  From the B&B tree, the leaf node (without children) 

associated with the minimum cost COPF, but infeasible 
since it does not coincide with any variable with its 
admissible discrete values, is selected. 

2.  Two child nodes are generated that are associated with 
the subproblems which result from constraining any 
infeasible variable. 

3.  While cores remain available the next minimum cost 
leaf node is selected and a new pair of child nodes is 
generated.  

4.  The child nodes are executed simultaneously in the idle 
cores, along with the other subproblems.  

5.  The minimum cost of all the tree leaf nodes constitutes 
a lower bound of the objective function, obviating any 
exception derived from the non convexity as has been 
previously explained. 

 If the minimizing costs problem is executed on the IEEE-
118 network, on a machine with 6 cores selecting two 
simultaneous variables (4 cores), and a bound solution is 
required with a relative gap of less than 0.2%, the execution 
time obtained is 8.4 s. if 2 idle cores are used to bound the 
solution, and 9.1s. if they are not used. 
 
Conclusions 
 This article presents an algorithm for assigning discrete 
variables parallelizing a branch and bound algorithm.  Its 
use is recommended when the easiest and quickest 
methods like rounding off to the nearest discrete value fails 
for some reason (infeasibility or loss of optimality). 
 Its main advantages over other solutions are: 
  It naturally ma nages the infeasibilities that could be 

incurred during the course of the adjustments of the 
discrete variables.  

  The algorithm allows for specifying, and therefore, 
limiting the maximum error allowed in the solution. 

  With the selection and the parallel execution of various 
nodes the computation time is significantly reduced, a 
greater number of combinations between the variables 
is explored and better optimums can be obtained. 

  The algorithm aims to take advantage of the current 
trend to include an increasing number of cores in the 
processors. 
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