
10 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 3b/2013

Slo-Li CHU, Geng-Siao LI, Ren-Quan LIU

Chung Yuan Christian University

Caliburn: a MIPS32 VLIW Processor with Hardware Instruction
Morphing Mechanism

Abstract. This work proposes a novel quad-issue VLIW architecture, called Caliburn, for directly executing legacy MIPS32 binary programs. To
schedule and pack legacy MIPS32 binary codes on-the-fly, Caliburn has an integrated novel hardware instruction morphing mechanism that
converts legacy MIPS32 binary instructions into a VLIW instruction bundles without the intervention of software compilers. The performance
enhancement of Caliburn with a pipelined MIPS32 processor is evaluated. The Caliburn VLIW processor is implemented using Bluespec
SystemVerilog HDL and synthesized using Synopsys Design Compiler. The experimental result reveals that the Caliburn processor achieves 3.08X
speedup, and can be operated at a frequency of 425 MHz by the fabrication of TSMC 40nm technology library.

Streszczenie. W artykule przedstawiono propozycję nowej struktury VLIW na potrzeby wykonywania programów w architekturze MIPS32. W
rozwiązaniu zastosowano technikę morfingu, w celu eliminacji programowych kompilatorów. Wykonano badania eksperymentalne na procesorze
MIPS32, potwierdzające efektywność i szybkość opracowanej architektury. (Caliburn – procesor VLIW MIPS32 ze sprzętowym mechanizmem
morfingu).

Keywords: MIPS32 VLIW Processor, Hardware Instruction Morphing, Bluespec SystemVerilog, Binary Translation
Słowa kluczowe: procesor VLIW MIPS32, hardware’owy morfing, Bluespec SystemVerilog, translacja binarna.

Introduction

Continuous advances in semiconductor technology have
made the modern processor more complex and improved
instruction-level parallelism (ILP). VLIW architectures,
including Intel Itanium and Transmeta Crusoe, are attractive
for increasing ILP in processors without the need for
sophisticated reordering and scheduling mechanisms.
However, the need to re-compile applications limits the
range of adoption of these architectures. Owing to the issue
of the compatibility of existed binary codes, software
programs must be recompiled from source codes and
cannot be used to execute directly existing applications.
Also, the instruction packing ratio and ILP of conventional
VLIW compilers are limited by run-time status of the
program, and the capabilities of VLIW processors cannot be
fully exploited accordingly. This work develops a novel
VLIW architecture, Caliburn, for directly executing legacy
MIPS32 binary programs. Caliburn comprises quad-issue
VLIW pipeline execution units and with a forwarding unit, to
decode/execute whole MIPS32 integer instruction sets. To
schedule and pack the legacy MIPS32 machine codes in
real time, a novel hardware instruction morphing
mechanism is developed to schedule/pack conventional
MIPS32 binary instructions into VLIW instruction bundles
without the intervention of a compiler. To elucidate the
advantages of Caliburn VLIW processor, the performance
of a Caliburn VLIW processor is evaluated. The Caliburn
VLIW processor was implemented using Bluespec
SystemVerilog and synthesized using the Synopsys Design
Compiler. The experimental results indicate that Caliburn
processor achieves a 3.08X performance enhancement
than conventional pipelined MIPS32 processor. The
working frequency of 425 MHz can be achieved under the
fabrication of TSMC 40nm technology.

Related Works

To increase the instruction level parallelism (ILP) of
modern microprocessors, more functional units must be
used to execute multiple issued instructions concurrently.
Such microprocessors are called superscalar, and can be
classified as dynamic superscalar or static superscalar.
Most dynamic superscalar architectures use an out-of-order
scheduling mechanism and reordering buffer to analyze
dependence, schedule instructions, issue instructions, and
execute instructions on-the-fly. Static superscalar
architectures, including VLIW architectures, can execute

multiple instructions concurrently, but cannot perform
dynamic scheduling or the dynamic issuing of instructions [1]
[3] [5]. Therefore, VLIW architectures require specific VLIW
compilers to analyze and pack instructions that can be
executed concurrently in an “instruction bundle” [6]. The
software that is designed for VLIW processors must be re-
compiled. This requirement reduces their usefulness.
Hence, many studies of binary translation and dynamic
scheduling/execution of unpacking instruction streams have
been published in recent years.

The Itanium [6] architecture is a 64-bit microprocessor
architecture that was designed by HP and Intel. It combines
the features of RISC and VLIW, and can execute an EPIC
instruction set. The VLIW compiler of the Itanium processor
can group independent instructions, exploit instruction level
parallelism, and finally pack independent instruction pairs
into a single EPIC instruction bundle. Despite the cache, the
hardware complexity of Itanium is lower than that of a
modern superscalar processor, such as a Pentium 4,
because the Itanium compiler reorders instructions, instead
of hardware scheduler. However, the major challenge
associated with the Itanium processor concerns binary
compatibility. Existing software must be recompiled, which
limits the range of uses of the Itanium processor.

Fig.1. Execution flows of four VLIW architectures

The Cyclone scheduler [3], developed by Ernst et al., is
a dynamic instruction scheduler for the multiple issues
superscalar processor. By using the proposed list-based,
single-pass instruction scheduling algorithm, Cyclone can
schedule and reorder instructions to improve the ILP of the
superscalar processor. The kernel of the Cyclone scheduler

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 3b/2013 11

is the time estimation mechanism, which can estimate the
execution time of the instructions. If the real execution time
is less than the estimated time, then scheduler will execute
those instructions. In contrast, if the real execution time is
larger than the estimated time, then the Cyclone scheduler
inserts instructions into the replay queue.

This section considers in detail the design and
implementation of the proposed Caliburn VLIW architecture.
First, the architecture of the baseline MIPS32 processor is
designed and the effectiveness of the integer MIPS32
instruction decoder and the five-stage pipelined processor
is verified. The basic building blocks, including the RISC
pipeline, arithmetic logic unit, register file, memory interface,
control unit, delayed branch, and forwarding unit, are
developed in this stage. Second, the quad-issue VLIW
processor is designed as an extension of the baseline
MIPS32 architecture. Since the basic MIPS32 processor
was designed in the preceding stage, the main objective of
this second stage is to form a quad-issue datapath and a
dedicated forwarding unit to handle the data dependence of
instructions in the quad-issue datapath. The corresponding
control unit, instruction decoder, and arithmetic and logic
units are extended or duplicated to meet the requirements
of the quad-issue processor. The complex register file is
designed for sharing among the quad-issue pipelines. Third,
the proposed sophisticated Hardware Instruction Morphing
(HIM) mechanism is developed.

Figure 2 shows the architecture of the proposed
baseline MIPS32 processors, which comprises a five-stage
pipeline. The stages are Instruction Fetch (IF), Instruction
Decode and Register Fetch (ID), Execution (EX), Memory
(Mem), and Write Back (WB). The first objective of
designing this baseline MIPS32 processor is to verify the
correctness of the integer MIPS32 instruction decoder. The
implemented instructions include 79 MIPS32 integer
instructions and two exception instructions. The second
objective is to construct the fundamental pipelined datapath
and the corresponding functional units, which are the
arithmetic and logic unit (ALU), register file, memory access
interface, program counter, and forwarding unit. After this
baseline MIPS32 processor is designed the development
steps described below can be accomplished.

Fig.2. Organization of five-stage pipelined MIPS32 processor

Register
File

Memory
Access

Controller

MIPS32 Integer ALU

MIPS32 Integer ALU

MIPS32 Integer ALU

MIPS32 Integer ALU

Multiplier/Divider

VLIW ALU Set

VLIW
Instruction

Decoder

M
U

X

Write
Back
Unit

M
U

X

Data Cache

M
U

X

M
U

X
M

U
X

M
U

X

M
U

X
M

U
X

M
U

X

VLIW
Instruction

Bundle
Fetch
Unit

VLIW
Forwarding Unit

Instruction
Cache

PC

Fig.3. Datapath of quad-issue VLIW processor with HIM echanism

Based on the baseline MIPS32 processor that was
described in the preceding subsection, the quad-issue
MIPS32 VLIW processor can be constructed by using and
extending the functional units of the baseline MIPS32
processor. Figure 3 presents the architecture of the quad-
issue MIPS32 VLIW processor. To extend to quad-issue,
the datapath undergoes various modifications. These
include the duplication of ALU, control signals, datapaths,
and the MIPS32 instruction decoder. The register file and
forwarding unit must be redesigned for the VLIW datapath.
First, the register file must be modified from its two-read
one-write capability to eight-read four-write capability, to
share access among the four datapaths. Second, the
forwarding unit must be rewritten for the transfer of
operands among the four datapaths when the instruction
contains data dependencies.

The primary modification of the register file is the
change in its accessing interface from two-read one-write
capability to eight-read four-write capability. The number of
registers remains 32. Since the four datapaths may read the
same register at the same time, the modified read interface
has to serve immediately.

Figure 4 shows the architecture of the proposed
Hardware Instruction Morphing (HIM) mechanism. Unlike
the dynamic scheduler in conventional out-of-order
superscalar processors, the proposed HIM mechanism
analyzes instructions in simply way; detects the basic block;
analyzes the dependence relations of the instructions;
detects the types of hazards, and packs four instructions
into an instruction bundle for the Caliburn VLIW processor.
Since the HIM mechanism does not need to track the entire
execution flow of each instruction, or to schedule
instructions between the major functional units of the
superscalar processor, the only purpose of the HIM
mechanism is to select four instructions and pack them into
an instruction bundle for the Caliburn VLIW processor. The
hardware complexity is thus dramatically reduced. Table 1
presents the types of instructions of MIPS32 ISA that
utilized by the Caliburn VLIW processor.

Instruction
Cache

PC

Instruction
Analyzer

Dependence
Detector

Instruction
Bundler

Instruction
Matcher

Basic Block
Finder

Dependence
Status Matrix

Instruction
Stream Pool

Instruction
Bundler

Controller

VLIW
Instruction

Decoder

Instruction
Stream

Analyzer

Instruction
Bundle
Merger

Fig.4. Hardware Instruction Morphing Architecture.

Table 1. Classification of MIPS32 instructions

 Type
Instruction Field

rs (r) rt (r/w) rd (w) sa (r)

1 R type 1 V V (Read) V
2 R type 2 V (Read) V V
3 Special R type 1 V
4 Special R type 2 V
5 Special R type 3 V (Read) V
6 Special R type 4 V V
7 I type 1 V V (Read)
8 I type 2 V V (Write)

All of the adopted MIPS32 instructions can be classified
into eight types, based on their formats and features. (1) R
type 1 and (2) R type 2 include most MIPS R-type
instructions that use three operands and do not require an
immediate value. The difference between R type 1 and R
type 2 is the fields of rs (r) and sa (r) operands. Special R

12 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 3b/2013

type instructions can be classified into four sub-types based
on their operands. I type 1 and I type 2 are MIPS I-type
instructions. They have the same operand format but with
different meanings. This classification of instructions
substantially reduces the computation time that must be
made by the Instruction Matcher to perform the analysis.

Architecture of Caliburn VLIW Processor

Figure 5 presents the datapath of the Caliburn VLIW
processor. To increase the number of instructions that can
be concurrently executed, Caliburn is composed of four
functional units, and a VLIW register file that can support
eight concurrently read and four concurrently write. Since
the number of concurrently executed instructions in the
VLIW datapath is increased, the dependence relations of
executed instructions increase. In the single-issue, five-
stage pipelined processor, stalling instructions to prevent
data dependence can solve this problem. However, in a
four-issue VLIW processor, Caliburn, the stall penalty is
serious if data-dependent instructions execute frequently.
To solve this problem, the dedicated forwarding datapath
for Caliburn VLIW processor is developed. The execution
flow of the proposed Caliburn VLIW processor is as follows.
Firstly, the MIPS32 binary instructions are fetched from the
Instruction Cache, according to the starting address stored
in PC. Then, the fetched instructions are fed into the
Hardware Instruction Morphing stage of the Caliburn VLIW
processor, to be analyzed, scheduled, and packed into a
VLIW instruction bundle on-the-fly. The packed VLIW
instruction bundle is then decoded using an Instruction
Decoder. Each execution step of the Caliburn VLIW
processor is much simpler than conventional dynamic
superscalar processor, such as an Intel Pentium 4, because
functional units of Caliburn processor operate in a fixed
orientation. Conventional dynamic superscalar processors
that adopt Tomasulo’s algorithm and a reordering buffer to
schedule instruction stream, their execution flow may
change every cycle because the completion time is variant
and the commit order may change.

Experiment Results

The proposed Caliburn VLIW processor is implemented
using Bluespec SystemVerilog [2], which is a new electronic
system-level (ESL) hardware description language for
unifying the hardware design flow from high-level modeling
to Verilog chip design. The benchmark program for
evaluating the speedup of Caliburn VLIW processor versus
baseline MIPS32 processor is compiled by the MIPS SDE
Lite [4] compiler. Figure 6 plots the experimental results
concerning speedups with variant sizes of basic block.
Since the Caliburn processor is a quad-issue VLIW
architecture, the speedup is less than 1.0 if the basic block
size is less than four. The Hardware Instruction Morphing
(HIM) that is proposed in Section 4 uses the branch
instruction as the boundary, so the VLIW instruction bundle
will be filled with instructions if the basic block size is less
than four. A basic block comprises two branch instructions,
and the number of packed VLIW instruction bundles
exceeds three. Therefore, the speedup of 2.51X is achieved
when the basic block size exceeds 16. The initial cost of the
basic block can be neglected. Finally, when the basic block
size exceeds 32, a speedup of 3.08X can be achieved,
indicating that the quad-issue VLIW processor can actually
issue, execute, and commit instructions with 3.08 time
performance improvement. The Verilog implementation of
the Caliburn VLIW processor, generated from the Bluespec
SystemVerilog design, is performed by using the Synopsys
Design Compiler with TSMC 40nm technology library. The
clock period is less than 2.35 ns, and the Caliburn VLIW

processor can achieve a working frequency of 425 MHz.
The chip area is 147887 μm2 and the corresponding power
consumption is 23.5 mW.

Fig. 5. Architecture of Caliburn VLIW processor.

Speedup vs. Basic Block Size

0.0x

0.5x

1.0x

1.5x

2.0x

2.5x

3.0x

3.5x

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 32

Basic Block Size

S
p

e
e

d
u

p

Fig.6. Speedup versus Basic Block Size.

Conclusions

Conventional VLIW processors can achieve a high ILP
without a complex instruction reordering mechanism, but its
use is limited by the problem of binary codes compatibility.
Software programs have to be recompiled and the
hardware resource of VLIW architectures must be fully
utilized to obtain better performance. This work proposes
the Caliburn VLIW architecture for executing legacy
MIPS32 binary programs without recompiling. A novel
hardware instruction morphing mechanism is integrated into
Caliburn to pack conventional MIPS32 binary instructions
into VLIW instruction bundles without any intervention by a
compiler. Relevant experimental results reveal that the
Caliburn processor increases speedup by a factor of 3.08,
and reaches a working frequency of 425 MHz using the
TSMC 40nm technology library.

Acknowledgments. This work is supported in part by the
National Science Council of Republic of China, Taiwan
under Grant NSC 101-2221-E-033 -049.

REFERENCES
[1] de Souza A.F., and Rounce, P., Dynamically Scheduling VLIW

Instructions. Journal of Parallel and Distributed Computing
60(2000) No. 12, 1480-1511.

[2] Bluespec, Inc., Bluespec SystemVerilog User Guide, 2008.
Available on: www.bluespec.com

[3] Ernst D., Hamel A., Austin T., Cyclone: A Broadcast-Free
Dynamic Instruction Scheduler with Selective Replay. In: 30th
Annual Int. Symposium on Computer Architecture, 2003.

[4] MIPS Technologies, Inc. MIPS32™ Architecture for
Programmers Volume I-III: Introduction to the MIPS32™
Architecture, Revision 2.0, 2003.

[5] Conte T., and Sathaye S., Dynamic Rescheduling: A
Technique for Object Code Compatibility in VLIW Architectures,
In: 28th Annual International Symposium on Microarchitecture,
1995.

[6] Sharangpani H., and Arora K., Itanium Processor
Microarchitecture, IEEE Micro, 20(2000), No. 5, 24-43.

Authors: Prof. Slo-Li Chu*, Mr. Geng-Siao Li, and Mr. Ren-Quan
Liu are with Department of Information and Computer Engineering,
Chung Yuan Christian University, 200, Chung Pei Rd., Chung Li,
32023, Taiwan.
*Corresponding author: E-Mail: slchu@cycu.edu.tw.

