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Abstract. This study takes the initiative to forecast China’s military spending based on autoregressive integrated moving average (ARIMA) models 
and artificial neural networks (ANNs) models. The mean absolute percentage error (MAPE) approach is applied to measure prediction accuracy. The 
results indicate that these single variable ARIMA models show higher accuracy and stability than those made by the single variable ANNs models 
across the four time periods, namely the short term (1 year), the medium term (3 years), the medium-long term (5 years), and the long term (10 
years). As to multiple variable ANNs models, the prediction accuracy of each model with different variables has advantages in different time periods. 
The highest accuracy for the long term predictions among all of the multivariate models is made by ANN2 including China’s military spending and 
GDP. ANN3 including variables of China’s military spending, GDP, and inflation rates illustrates the most accurate prediction for the short term and 
medium-long term, while ANN4 including China’s military spending, GDP, inflation rates, and Taiwan’s military spending shows the highest accuracy 
for the medium term prediction. This concludes the contributions of this study.  
 
Streszczenie. W artykule przedstawiono wyniki analizy dotyczącej przewidywanych wydatków Chin na militaria, opracowanej na podstawie modelu 
autoregresji (ang. ARIMA) oraz sztucznych sieci neuronowych (ANN). Dokładność predykcji oparta została na funkcji średniej wartości absolutnej 
procentowego uchybu. Badania wykazują, że model ARIMA ma wyższą dokładność i stabilność niż model oparty na ANN w odniesieniu do czterech, 
różnych okresów (1, 3, 5, 10 lat), przy czym dla ANN badanie wykonano dla czterech wartości dokładności predykcji.  (Przewidywania wydatków 
militarnych Chin na podstawie modeli ARIMA i sztucznych sieci neuronowych). 
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1. Introduction 

The fact that China's active diplomatic and business 
activities with other countries has led to a substantial growth 
of its economy in recent years have drawn much more 
attention for China’s “peaceful rise” and its great-power 
status [1]. The increasing military spending of China reflects 
its general economic growth. Indeed, China will become a 
global partner or military superpower relying on its military 
spending [2]. Its military spending growth had shot up to 
189 percent over the period 2001 through 2010 before it 
became the fastest growing country in the world, while that 
of the USA’s was 81 percent and European NATO countries 
remained flat or even declined over the same period. 
China's military spending, about $119 billion In 2010, was 
approximately twice as much as the United Kingdom, $59.6 
billion, France, $59.3 billion, Russia, $58.7 billion, and 
Japan, $54.5 billion [3].  

Many researchers have been dedicated to develop 
and improve time series forecasting models over the past 
several years [4]. Being as an active research method, time 
series prediction has drawn significant attention for 
applications in variety of studies [5]. Autoregressive 
integrated moving average (ARIMA) model is one of the 
most principal and widely used time series models [6]. 
ARIMA models can be used to forecast water quality [7], air 
quality [8], epidemiology [9], [10], consumers’ expenditure 

[11], sales forecasting [12], energy price [13], ozone levels 

[14], ammonia concentration [15], etc. ARIMA models are 
applicable when the time series are stationary without 
missing data [16]. However, they have limited accuracy due 
to its failure to forecast extreme cases or nonlinear 
relationship. On the other hand, artificial neural networks 
(ANNs) have been suggested as an alternative method for 
nonlinear models [17]. ANNs models are an interconnected 
group of natural or artificial neurons that use mathematical 
or computational models for information processing based 
on a correlated method for calculation.These models also 
can change their structure based on internal or external 
information that flow through the network or system. As 
noticed, when data have shown more non-linear orientation, 
ANNs models are more accurate than ARIMA models [14]. 
These advantages make them attractive in predicting 

nonparametric nonlinear time series models [4], [5], [8], [18], 
[19], [20], [21], [22], [23], [24], [25], [26].  

Although these two models have the above 
advantages in prediction for some specific situations, the 
forecasting results are out of expectation under some 
conditions. For example, as function approximators, the 
application of ANNs showed significantly non-accurate 
predictions than those made by linear regression [27] and 
ARIMA models failed to forecast extreme concentrations of 
respirable suspended particulate matter (RSPM) in urban 
Delhi and Hong Kong [28]. When the data are linear without 
much disturbance, predictions conducted by ANNs are 
worse than those obtained by linear models [5]. In addition, 
a research applied auto regressive (AR) model and BP 
neural network for the Dissolved Oxygen (DO) outperforms 
in short interval prediction, while BP neural network 
illustrates better performance in longer interval prediction 
[29]. Furthermore, Taskaya & Casey [30] operated 
autoregressive linear and time-delay neural networks 
models with nine data sets for predicting and learned that 
the former achieve higher accuracy than that made by the 
later in some cases. Denton [31] indicated that under ideal 
states, with all regression assumptions, there was little 
variance in the forecasting between ANNs and linear 
regression, and only under less ideal states, such as 
outliers, multicollinearity, and model misspecification, ANNs 
models illustrated better results. Certainly, both ARIMA and 
ANNs models have their success in prediction for linear or 
nonlinear patterns. Therefore, no general models exist to fit 
for all circumstances. 

There is a considerable literature to discuss the 
Granger causality relationship between military spending 
and economic growth [32], [33], [34], [35], [36], [37], [38], 
[39], [40]. Besides, Wanger & Brauer [41] employed 
dynamic forecasting genetic programming (DFGP) to 
predict the US’s gross domestic product (GDP) with its 
military spending as one of the GDP’s determinants and the 
results were compared with the prediction made by a 
regression-based prediction. The results revealed that 
unlike regression-based model, DFGP did not generate any 
prior assumption regarding any functional form or produced 
the time-span for prediction. In addition, Andreou & 
Zombanakis [42] applied ANNs models to predict the future 
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behavior of relative security between Greece and Turkey 
and concluded that high forecasting performance permitted 
the application of alternative scenarios to predict the impact 
of the Greek-Turkish arms race on the relative security of 
the Greek-Cypriot alliance. Moreover, Andreou & 
Zombanakis [43] predicted the burden on the Greek 
economy resulting from the arms race against Turkey 
based on ANNs models to measure the pressure on the 
military debt and the GDP share of defense expenditure on 
Greece. The results exhibited highly satisfactory accurate 
prediction on both military debt and defense expenditure. 
Furthermore, military spending and economic growth are 
correlated and economic growth will not be the single 
determinant of military spending. The research completed 
by Starr et al [44]. showed that the relationship between 
defense spending and inflation was mutually related in 
France and Germany. Chan’s [45] study proved that military 
spending tended to be more import-demanding in the 
developing countries and was possible to generate 
domestic inflation. Military spending might cause inflation 
and further hinder economic growth [46], [33]. China is 
emerging rapidly as the next global superpower based on 
its economic and political development. It is reasonable for 
Taiwan to deliberate the issue of military spending due to 
the hostile relationship between Taiwan and China in the 
past [38]. However, little study has dedicated to predict 
China’s military spending based on ARIMA and ANNs 
models. Therefore, the aim of this paper is to apply these 
two methods for predicting China’s military spending trying 
to understand and compare the accuracy obtained by both 
methods in different time period.  

The rest of the paper is organized as follows. In the 
next section, the basic concepts of ARIMA and ANNs are 
introduced. The third section presents the prediction results 
from the empirical investigation. Concluding remarks are 
provided in the final section.  

 

2. Methodology 
To analyze time series data and make accurate 

forecasting are motivated many researchers in several 
fields, ranging from the natural sciences, economics, and 
management related disciplines. It is well noticed that 
ARIMA models are designed for predicting linear data,16 
while ANNs models are suitable for data with nonparametric 
and nonlinear patterns [5], [8], [17], [18], [22], [26]. 
Obviously each model possesses its own strength and has 
different applications. Based on single variable ARIMA 
models and single variable as well as multivariate ANNs 
models to conduct forecasting, this study applies the mean 
absolute percentage error (MAPE) approach to evaluate 
prediction accuracy. 
 

2.1 Research period 
This study extrapolates predictions into separates 

periods of time, namely the short term (1 year), the medium 
term (3 years), the medium-long term (5 years), and the 
long term (10 years). items of data provided by Stockholm 
International Peace Research Institute (SIPRI) and 
International Monetary Fund (IMF) for the period of 1953 to 
2006 are used for prediction analysis. Out-of-sample 
forecast tests based on the 54 yearly data are conducted 
for predicting military spending for the four different time 
periods. Of those, the first 53 items, dating from 1953 to 
2005, are used to establish the short-term model and the 
result is compared to the data in 2006 to determine the 
accuracy of that model. In the same fashion, the medium-
term model uses 51 items of data from 1953 to 2003 testing 
against the data from 2004 to 2006. The medium-long-term 
model uses 49 items of data up to 2001 testing against the 
data from 2002 to 2006; and the long-term model uses 44 

items of data up to 1996 testing against the data from 1997 
and onward.  

 

2.2 Autoregressive integrated moving average (ARIMA) 
models 

For more than three decades, ARIMA linear models 
have dominated many fields of time series prediction. In an 
ARIMA (p, d, q) model, the future value of a variable is 
supposed to be a linear function of several past 
observations and random errors. The general form is shown 
as follows: 
(1)                      ø(B) d(yt−u) = Ɵ(B)at , 
 

where yt and at are the actual value and random error at 
time period t, respectively. 

ø(B) = 1−
p
i 1

i
iB , Ɵ(B)= 1− 

q
j

j
j B1 are polynomials 

in B of degree p and q, øi(i=1, 2, . ., p), ∇=(1−B), B is 
the backward shift operator, p and q are integers and the 
orders of the model, and d is an integer and the number of 
regular differencing. Random errors, at, are the noise 
components of the stochastic model assumed to be 
independent, identically distributed (iid) with a mean of zero 
and a constant variance of σ2, NID(0, σ2). The ARIMA 
modeling method includes three steps: model identification, 
parameter estimation, diagnostic checking. Stationary is 
necessary for an ARIMA model to predict. Data 
transformation is required to generate the stationarity of 
these time series. The first step in model identification is 
that if a time series is generated from an ARIMA process, it 
should have some autocorrelation properties. It is likely to 
identify one or more feasible models for the given time 
series. The temporal correlation structure of the sample 
data is proposed to use the autocorrelation function (ACF) 
and partial autocorrelation function (PACF) to identify the 
order of the ARIMA model1 [16], [47]. The model that gets 
the minimum Akaike Information Criterion (AIC) is chosen 
as the optimal model. After the functions of the ARIMA 
model have been specified, estimation of the model 
parameters is forward. When the fitting model is chosen 
and its parameters are estimated, the Box-Jenkins 
methodology requires to examine the residuals of the model 
is minimized. It can be achieved using a nonlinear 
optimization process. The last step is diagnostic checking of 
the model. Several tests are operated for diagnostic check 
to determine whether the residuals of the ARIMA models 
from the ACF and PACF graphs are independent and 
identically distributed [7]. As a good prediction model, the 
residuals are used to examine the goodness of fit of the 
model that meets the requirements of a white noise 
process. If the model is not suitable, a new model should be 
identified. The steps of parameter estimation and diagnostic 
checking are repeated many times until an optimal model is 
selected [5]. The last selected model is used to forecast the 
value.  
 

2.3 Artificial neural networks (ANNs) models 
ANNs can be classified as a kind of artificial intelligence 
with self-learning function. ANNs models are a vast parallel 
processing of the information from the data and has a 
natural tendency for storing experiential information and 
making it available for the later use [48]. They can be widely 
used in many fields related to classification and forecasting. 
Users of ANNs do not need to design a complex program to 
solve problems. ANNs models are capable to estimate a 
large class of functions with high accuracy [5] without any 
prior assumption and identify patterns or trends and learn 
from the environment. The most commonly used form of 
ANNs models are the three layer feed-forward back-
propagation neural network [49]. The basic principle of 
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calculation applies the concept of the gradient steepest 
descent method to minimize the average squared error 
between the network's outputs. In other words, take the 
desired output value to minus the inference output value to 
get the error signal, then it can be returned to the network. 
After repeated amendments, a minimum error can be 
reached. This network model characterizes as part of multi-
layer, feed-forward network with supervised learning. The 
network includes three basic frameworks, namely input 
layer, hidden layer and output layer. In order to calculate 
the precise output value under repeated learning 
processes, the information provided to the network must 
have the input values and target output values. And in the 
processes of unceasing endeavors, the gap between the 
output inference value of network and target output values 
can be narrow down and reach convergent effect. In 
general, if there are many uncertainties, and non-linear 
complex relationships existed between the output and input, 
the back-propagation neural network can be applied to 
solve such problems. The model is illustrated by a network 
of three layers of simple processing units linked by acyclic 
connections. The relationship between the output (yt) and 
the inputs (yt−1, . . .,yt−P) has the following algorithmic 
illustration: 

(2) yt = w0 + 


Q

j

igw
1

(wQj+




p

i
itji yw

1
, ) + et , 

where wi,j (i = 1, 2, . . . , P, j = 1, 2, . . . , Q) and wj (j = 
1, 2, . . . , Q) are model parameters often called linking 
weights; P is the number of input points; and Q is the 
number of hidden points. The sigmoid function is often used 
as the hidden layer transfer function, that is, 
(3) Sig(x) = 1/{1 + exp(−x)}                
Hence, the ANNs model executes a nonlinear operative 
mapping from the previous observations to the future value 
yt, where W is a vector of all parameters and f(·) is a 
function defined by the network formation and correlation 
weights. 
(4) yt = f (yt−1, . . . , yt−P,W) + et ,           

Thus, the neural network is equal to a nonlinear 
autoregressive model. Expression (2) indicates one output 
point in the output layer, which is normally used for one-
step-ahead prediction. The simple network given by (2) is 
amazing effective. It can estimate random function as the 
number of hidden points Q is adequately large.4 Simple 
network framework that has a small number of hidden 
points often performs well in out-of-sample prediction. The 
generalization ability begins to worsen when the network 
starts to match the noise of the training data and the data 
trained is more than needed [50]. 

   
2.4 Measurement of prediction 

MAPE approach is frequently adopted as the 
measurement criteria of prediction accuracy in a fitted time 
series. MAPE is mainly used to measure the percentage of 
unexplained part of a model constructed. Therefore, the 
smaller the MAPE value obtained may indicate that more 
accuracy of the model will be. Also, it means that a better 
match exists between the historical data and the estimation 
result of the forecasting model. MAPE equation is shown as 
follows:

 





n

t t

tt

A

AF

n
MAPE

1
%100

1  

Where At is the actual value and Ft is the value 
predicted. The difference between At and Ft is divided by 
the actual value At again. The absolute value of this 
computation is summed for every prediction point in time 
and divided again by the number of fitted points n. This 
makes it a percentage error, so one can evaluate the error 

of matched time series that differ in levels. Lewis [51] 

categorizes the value of MAPE into 4 levels illustrated. 
Lewis's explanation of MAPE results is a means to assess 
the accuracy of the prediction--less than 10% is a highly 
accurate prediction, 11% to 20% is a good prediction, 21% 
to 50% is a reasonable prediction, and 51% or more is an 
inaccurate prediction.  

 

3. Empirical analysis     
3.1 Single variable ARIMA models 

This study employs single variable ARIMA models and 
single variable as well as multivariable ANNs models. 
Before beginning empirical analysis, data must be verified 
as stationary in order to yield more significant results. This 
is accomplished by using the Augmented Dickey-Fuller 
(ADF) test, the widespread unit root test. If the test shows 
the data to be non-stationary, they will be made stationary 
using finite-difference methodology. The unit root test 
consists of three types: trends and intercepts, only 
intercepts, and none; these three types are compared one-
by-one. Analysis of the raw data for China’s military 
spending is shown in Table I.  
 

Table 1. The results of unit root tests of China’s military spending. 
 

Prediction 
periods 

Excluding 
intercept and 

time trend 

Including 
intercept but 

excluding time 
trend 

Including 
intercept and 

time trend 

t  
value 

p  
value 

t 
value 

p 
value 

t  
value 

p 
value 

Short term 
 -0.169 0.620 -1.433 0.559 -1.831 0.675 

Medium term 
-0.453 0.5136 -1.678 0.436 -1.910 0.634 

Medium-long 
term -0.740 0.390 -1.844 0.355 -1.901 0.638 

Long term 
 -0.919 0.313 -1.786 0.382 -1.690 0.738 

***,**,* indicate 1%, 5%, 10% significance level respectively 
 

As illustrated by Table I, none of the predictions for 
military spending over the different time periods are 
particularly outstanding. This indicates that the raw data 
consist of simple roots are not stationary, necessitating 
approximations through the first-order differential. Results of 
this method can be seen in Table II. As can be seen from 
the results of Table II, the various predictions are now 
stationary, while the results of the three unit root tests are 
highly consistent. Next, modeling of the research is based 
on the differentials data. 
 

Table 2. The results of unit root tests of the first-order Differential 
for China’s military spending. 
 

Prediction 
Period 

Without intercept 
and time trend 

With intercept 
but without time 

trend 

With intercept 
and time trend 

t  
value 

p 
value 

t  
value 

p 
value 

t  
value 

p 
value 

Short 
term 

-7.033 
*** 

0.000 
-7.066 

*** 
0.000 

-7.003 
*** 

0.000 

Medium 
term 

-6.979 
*** 

0.000 
-6.976 

*** 
0.000 

-6.899 
*** 

0.000 

Medium
-long 

-6.983 
*** 

0.000 
-6.943 

*** 
0.000 

-6.874 
*** 

0.000 

Long 
term  

-6.638 
*** 

0.000 
-6.569 

*** 
0.000 

-6.544 
*** 

0.000 

***,**,* indicate 1%, 5%, 10% significance level respectively 
 

The first-order differentials are used to make the 
sequence of military spending become stationary. The 
sequence is then rendered and analyzed using 
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autocorrelation and partial autocorrelation functions (ACF 
and PACF) to determine the possible number of periods for 
processes AR(p) and MA(q). From ACF graph, we realize 
that lag 6 protrudes to double the range of the standard 
deviation, while the PACF graph illustrates an exponential 
drop, thus being the MA(1) model. Since this is the result of 
differentiation, the preliminary model is determined as 

ARIMA (6, 1, 1), with a formula expression -1DEChina  

represents the China’s military spending for the previous 

period, while 1 1(1 )B e 
represents the white noise of 1e .  

 

-1 1 1(1 )  DE (1 )B China B e   
  

 

The Q statistics of the residuals indicate that the 
coefficients of difference between the different periods are 
within twice the range of standard deviation. Q’s value of 
7.9508 is belowχ0.05 (23.685), indicating the stochastic error 
without autocorrelation. Table III lists the results and 
analysis for each period. Based on the above data, these 
ARIMA models show the best results for medium term (3 
years), followed by short term (1 year), then long term (10 
years), and lastly medium-long term (5 years). Medium, 
short, and long term results reach high levels of accuracy, 
while the result of medium-long term shows good accuracy 
only. Due to the national security considerations as well as 
the major military weapon system procurement procedures, 
establishment of one-generation military force may last for 
decades. Empirically, the results revealed that these single 
variable ARIMA models based on data obtained from 1953-
2006 provides consistently “highly accurate” and “good” 
results to predict China’s military spending over the various 
periods. This also demonstrates that China’s military 
spending based on national security has been considerable 
stable over the past decades. Therefore, long-term military 
budget planning is normally consistent and stable in China. 
However, the prediction results of short and medium term 
outperform those made by medium-long and long term. 

 
Table 3.  The prediction results of ARIMA models.  

Prediction Period 
Mean Absolute 

Percentage Error 
(MAPE) 

Results of 
Prediction 

Short term (1 year) 8.76% Highly accurate 
Medium term (3 years) 8.63% Highly accurate 
Medium-long term (5 
years) 

10.79% Good 

Long term (10 years) 9.32% Highly accurate 
 

Table 4.  Explanatory of variables under different ANNs models. 
Model Input Layer Output Layer 

ANN1 

X1: China’s military spending in the 
previous period 

Y: China’s 
military 
spending in the 
current period 

ANN2 

X1: China’s military spending in the 
previous period 
X2: China’s GDP in the previous period 

Y: China’s 
military 
spending in the 
current period 

ANN3 

X1: China’s military spending in the 
previous period 
X2: China’s GDP in the previous period  
X3: China’s inflation rates in the 
previous period  

Y: China’s 
military 
spending in the 
current period 

ANN4 

X1: China’s military spending in the 
previous period 
X2: China’s GDP in the previous period 
X3: China’s inflation rates in the 
previous period 
X4: Taiwan’s military spending in the 
previous period 

Y: China’s 
military 
spending in the 
current period 

 

3.2 Artificial neural networks (ANNs) model 
This section uses back-propagation neural networks as 

a means to predict China’s military spending. For this 
research, the best model decided finally is a synthesis of 
one to four separates input variables, hidden layers and 
learning rates. Both one-on-one and one-on-many are 
compared in order to determine the optimal combination 
(normalized mean square error and mean absolute error 
being the smallest, and the prediction value being the best). 
Variables are firstly divided into four model types (see Table 
IV). ANN1 uses the historical data of China’s military 
spending to predict its future spending. ANN2 applies 
China’s military spending and GDP as variable. ANN3 
includes China’s military spending, GDP, and inflation rates 
as variables. Lastly, ANN4 includes variables such as 
China’s military spending, GDP, inflation rates, and military 
spending in Taiwan. 

Network structures are separated into processing units 
1, 2, 3, and 4 input layer types. The output layer has one 
processing unit, while the hidden layers are set one layer. 
Under different networks and different settings, a model’s 
learning results are better when the mean squared error 
(MSE), normalized mean squared error (NMSE), and mean 
absolute error (MAE) are smaller and the related 
coefficients are larger. These criteria will be used to select 
the optimal model for back-propagation network (BPN). 

3.3 Empirical analysis 
Following the above-mentioned methodology, the BPN 

models show the best results for the long term, followed by 
medium-long term, then medium term, and lastly short term. 
The two shorter time periods, 1 and 3 years, achieve a 
“reasonable” level of accuracy, while the two longer periods, 
5 and 10 years, indicate “good” level of accuracy (as in 
Table V). In other words, the longer time periods, the better 
prediction accuracy achieves. 

 
Table 5.  Prediction results of ANN1 for China’s military spending.  

Prediction Period 
Mean Absolute 

Percentage Error 
(MAPE) 

Results of 
Prediction  

Short term (1 year) 21.21% Reasonable 
Medium term (3 years) 20.03% Reasonable 
Medium-long term (5 
years) 

18.21% Good 

Long term (10 years) 11.79% Good 
 

Table 6.  Prediction results of ANN2 for China’s military spending. 

Prediction Period 
Mean Absolute 

Percentage Error 
(MAPE) 

Results of 
Prediction  

Short term (1 year) 3.26% 
Highly 

accurate 
Medium term (3 
years) 

7.61% 
Highly 

accurate 
Medium-long term (5 
years) 

2.78% 
Highly 

accurate 

Long term (10 years) 7.32% 
Highly 

accurate 
 

ANN2 model including military spending and GDP 
performs the best resulted in medium-long term prediction, 
then short term, followed by long term, with medium term 
coming in the last place. All of these periods reach levels of 
“highly accurate” (as in Table VI). Meanwhile, ANN2 reflects 
that China’s GDP for the given period has an important 
effect on military spending. It also shows that this BPN 
model has a high level of accuracy in predicting China’s 
military spending, and could thus be a valuable reference 
for policymakers. 

When military spending, GDP, and inflation rates are 
used as variables, the medium term predicting is the best, 
then medium-long term, followed by short term, with long 
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term coming in the last place. In this model, short, medium, 
and medium-long predictions all reach “high” levels of 
accuracy, while the long-term predicting resulted in 
“incorrect” data (see Table VII). The prediction results of 
this model with inflation rates are highly accurate in the 
short, medium, and medium-long terms. However, the result 
of the long term prediction shows “inaccurate” indicating 
that the central government and defense department will 
consider inflation rates for planning military budget within 
one to five years of time periods, but inflation rates are not 
suitable for predicting China’s military spending for more 
than five years. 

Lastly, military spending, GDP, inflation rates, and 
Taiwan’s military spending are used as variables. In ANN4 
model, the best accurate result came for the medium term, 
followed by the short term, then the medium-long term, and 
the long term coming for the least accurate. The medium 
term prediction exhibits a “high” accuracy level, while short 
and medium-long term predictions achieve “good” levels. 
Long term prediction results are “reasonable.” (see Table 
VIII). Based on the mutual long hostile relationship between 
China and Taiwan, the results show that China’s military 
spending has been significantly influenced by Taiwan’s 
medium-term (3 years) military expenditures. 
 
Table 7.  Prediction results of ANN3 for China’s military spending. 

Prediction Period 
Mean Absolute 

Percentage Error 
(MAPE) 

Results of 
Prediction  

Short term (1 year) 2.97% Highly accurate 
Medium term (3 years) 2.10% Highly accurate 
Medium-long term (5 
years) 

2.75% Highly accurate 

Long term (10 years) 50.18% Inaccurate 
 
Table 8.  Prediction results of ANN4 for China’s military spending. 

Prediction Period 
Mean Absolute 

Percentage Error (MAPE) 
Results of 
Prediction  

Short term (1 year) 10.58% Good 
Medium term (3 years) 1.2% Highly accurate 
Medium-long term  
(5 years) 

11.22% Good 

Long term (10 years) 28.95% Reasonable 
 

Table 9. Comparison of prediction accuracy of ARIMA and ANN 
models. 

  
Model    
Period 

ARIMA  
(MAPE) 

ANNs (MAPE) 

ANN1 ANN2 ANN3 ANN4 

Short term  
(1 year) 

8.76% 21.21% 3.26% 2.97% 10.58%

Medium 
term 

 (3 years) 
8.63% 20.03% 7.61% 2.10% 1.2% 

Medium-
long term (5
years) 

10.79% 18.21% 2.78% 2.75% 11.22%

Long term  
(10 years) 

9.32% 11.79% 7.32% 50.18% 28.95%

 

In general, data shown in Table IX, single variable 
ARIMA model can achieve “highly accurate” results for 
short (8.76%), medium (8.63%), and long (9.32%) term 
predictions, and “good” results for medium-long (10.79%) 
term predictions. On the other hand, ANN1 shows only 
“reasonable” accuracy for short (21.21%) and medium-long 
(20.03%) term, and “good” accuracy for medium-long 
(18.21%) and long term (11.79%) predictions.  
The prediction performance of these single variable ARIMA 
models show three “highly accurate” results with only one 
“good” result, while the single variable ANN1 models show 
only “good” or “reasonable” accuracy for the four different 
periods. In comparison of the prediction results made by 
ARIMA models and ANN1 models, the ARIMA models are 
superior to those conducted by ANN1 due to the 

characteristics of the time series in this research. As for 
multiple variable models, ANN3 shows the most accurate 
results for both short term (2.97%) and medium-long term 
(2.75%) predictions, while ANN4 shows the highest 
accuracy for medium term predictions (1.2%). Meanwhile, 
ANN2 had the most accuracy for the long term (7.32%). 
 

4. Conclusions 
China has, in the past decade, seen immense 

economic strides, and with its military budget growing by 
the multiples. This has led to something of a threat in the 
military stability of Asia, and even of the whole world. These 
various factors add up to mean that an accurate prediction 
and analysis of China’s military spending are critical to 
Taiwan, Japan, USA and other Asian countries.  

For single variable models, the ARIMA models show 
more stability and high accuracy across all four time 
periods, while ANNs models show only “good” accuracy. 
The results reveal that the single variable ARIMA models 
based on data obtained from 1953-2006 provide 
consistently highly accurate and good results to predict 
China’s military spending over the various periods. This 
also demonstrates that China’s military spending based on 
national security has been considerable stable over the past 
decades. For multiple variable models, ANN2 including 
China’s military spending and GDP indicate the highest 
accuracy for the long term predictions among all of the 
multivariate models. ANN3 including variables of China’s 
military spending, GDP, and inflation rates shows the most 
accurate prediction for the short term and medium-long 
term, while ANN4 including China’s military spending, GDP, 
inflation rates, and Taiwan’s military spending reaches the 
highest accuracy for the medium term prediction. This 
concludes the contributions of this study. 

Based on the national security considerations as well 
as the major military weapon system procurement features, 
establishment of one-generation military force may last for 
decades. The drawing up of military spending budgets is 
intertwined with many factors; military, political, and 
economic elements will all inevitably have their impacts. 
Further studies are needed to use more variables with 
various research methods trying to compare the prediction 
accuracy made by different approaches for policymakers as 
references.  
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