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Abstract. This paper proposes a hybrid cooperative quantum particle swarm optimization (HCQPSO), hybridizing dynamic varying search area, 
cooperative evolution, simulated annealing and quantum particle swarm optimization (PSO) for function optimization. In the proposed HQCPSO, a 
technique of dynamic varying search area helps reduce the search spaces and populations of swarms, which could make the optimization more 
efficient. Simulated annealing is integrated in the position update to modify the trajectories of particles to avoid being trapped in the local optimum. 
To test the performance of HQCPSO, numerical experiments are conducted to compare the proposed algorithm with different variants of PSO. 
According to the experimental results, the proposed method performs better than other variants of PSO on benchmark test functions. 
 
Streszczenie. W artykule zaproponowano hybrydowy algorytm optymalizacji PSO. Porównanie z innymi, znanymi wariantami wykazało, że 
zastosowane w metodzie rozwiązania, pozwalają na  efektywniejsze działanie proponowanego algorytmu PSO. Wyniki eksperymentalne 
potwierdziły powyższą tezę. (Hybrydowy algorytm optymalizacji roju cząstek z dynamicznie zmiennym obszarem wyszukiwania w 
optymalizacji funkcji). 
 
Keywords: Particle Swarm Optimization; Quantum-Behaved; Cooperative Evolution; Varying Search Area; Simulated Annealing. 
Słowa kluczowe: optymalizacja roju cząstek, rozwój spółdzielczy, zmienny obszar poszukiwań, symulowane wyżarzanie, kształtowanie 
kwantowe. 
 
Introduction 

PSO, originally introduced by Kennedy and Eberhart [1], 
has become one of the most important swarm intelligence-
based algorithms. The unique information diffusion and 
interaction mechanism of PSO enable it to solve many 
problems with good performance at low computational cost. 
Among the applications, function optimization has been often 
chosen to check the performance of them, because 
benchmark functions are not only well described in literature 
such as their properties, location and value of the optimal 
solution, but also have many different versions that can rove 
different capabilities of optimizer [2]. However, like all other 
intelligence algorithms, escaping from the local optimum and 
preventing premature conver-gences are two inevitable 
difficulties in implementation, especially as dimensionality 
increases, problems become more complex and the 
possibility for finding global optimum sharply decreases. This 
paper employs a hybrid mechanism to improve the 
performance of PSO for function optimization by dynamic 
varying search area, cooperative evolution, simulated 
annealing and Quantum PSO (QPSO). In the proposed 
approach, a technique of dynamic varying search area helps 
reduce the search areas and populations of swarms, which 
makes the algorithm more efficient. Also, simulated 
annealing is integrated in the position update to modify the 
trajectories of particles to avoid being trapped in the local 
optimum. The structure of the paper is organized as follows: 
a brief overview of QPSO and CQPSO are presented.  

 
Quantum PSO (PSO) and Cooperative QPSO 

In literature [3,4], Sun et al. proposed a Quantum Particle 
Swarm Optimization (QPSO), which discards the velocity 
vector of original PSO and consequently changed the 
updating strategy of particles’ position to make the search 
more simple and efficient. 

Cooperative Particle Swarm Optimization (CPSO) was 
proposed by Van den Bergh F. in [5], in which the high-
dimension search space can be decompose into small scale 
ones. Compared to basic single swarm PSO, both 
robustness and precision are improved and guarantied.  

 
The proposed algorithm: HCQPSO 

As we known, complexity of optimization problem is not 
only relies heavily on the objective/constraint function, but 
also related with its search area. Simply speaking, subjected 
to the same objective/constraint function, the larger search 

area is, the harder it can find the solution [6]. Based on this 
idea, to vary the search area dynamically, or say it reduce, 
is necessary to accelerate the processing of algorithm. On 
the other hand, when the search area reduced, the 
populations of sub-swarms are unnecessary as big as 
previous. Given an optimization function: 
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where 1 1 2 2[ , ] [ , ] [ , ]
d dN NS a b a b a b   ,the basic rationale 

of Dynamic Varying Search Area (DVSA) could be 
illustrated as the following description: Firstly, assume that 
Np cooperative sub-swarms probe in the search space. 
When the minimal distances between optimal individuals of 
each sub-swarm reached a threshold, according to the 
maximum likelihood estimation, the hypothesis that the real 
optimal solution is in the area arounded by these particles 
was established. Then reduce the previous search area S  
to 'S , generate a new swarm with same sub-swarms on 

'S , and decrease the popula-tions meanwhile. Finally, 
repeat the above procedures untill satisfy the end condition.  
 

 
 
Fig. 1. A case of DVSA 
 
Considering the vector x  before the r -th reduce, where 
the i -th component ix  ranges over 

1 1[ , ]r r
i ia b  . Then 

x could be expressed as 
1 1 1[ , ]r r rx a b   . 

Fig.1 examplifies the case that four cooperative sub-
swarms reduce their search area. First, they probe the 

solution in S  and get the best particles * * * *
1 2 3 4, , ,x x x x  which 

included in 'S . So the search area becomes 'S . The next 

time of reduce to 
''S is the same procedure. 
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In this part, we will give the condition when the DVSA 

occures. Surpose there exist pN  sub-swarms, the best 

particles set found is writen 
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Now, let us consider the distance among them. 
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where 
2
  is the 2-norm on corresponding search area.  

When 
1rD 
 reached a small threshold, according to the 

maximum likelihood estimation, the hypothesis that the real 
optimal solution is in the area arounded by these particles 
was established. So the latter search can be performed 
around these particles. In light of this, we can give the 
condition of DVSA as shown in formula (5). 
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In other words, if the above equation is satisfied, then 
change the search area of the next generation of sub-
swarms untill the DVSA occures again.   can be a fix 
number, but more often, it is a paramater can be changed 
adaptively according to the results of evolution. 

Let consider the search area after reduce. Note that after 
the r -th reduce, ix  ranges over [ , ]r r

i ia b . Then the 
upper/Lower bounds are defined by the following equation: 
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To guarantee the new search area not larger than the 
previous area, the above equation should be modified as 
follows: 
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The computational complexity also relies heavily on the 
scale of the population of the swarm/sub-swarm. In general, 
the more time about particle evaluation, the more 
computation takes place. Hence, under the permission of 
optimization performance, it is necessary to cut down the 
population of sub-swarms. 

In this article, we will follow a traditional method called 
search granularity. Take the particle after the r -th reduce for 
instance, whose i -th component ix  ranges over [ , ]r r

i ia b . 
The distance of this interval can be written as Eq.(8) which 
reflect the refined effort of search。If the distance among the 
solutions is small, we can say that search granularity is small, 
and vice versa. From the real experience, the bigger swarm, 
the less distance among the particles, and aslo lessen the 
search granularity. 

 

(8)  r r r
i i id b a  

Furthermore, if it is asked that the search granularity on 

[ , ]r r
i ia b  should be 1 / ikN , the population scale of sub-

swarm can be determined abey the below equation. 
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where     is the floor function. When the search area 

descreses, the population of the related sub-swarm also 
becomes small. 

After determining the populations of sub-swarms, how 
to generate the new swarm becomes vital in the next steps. 
In our previous research, an electoral mechanism was 
proposed to select the elites from each sub-swarm. In our 
algorithm, an electoral swarm is generated by the voting of 
primitive sub-swarms and also participates in evolution of 
swarm, whose candidate particles come from primitive sub-
swarms with variable votes. In reverse, the number of 
selected particles could also impact the voting of the 
primitive sub-swarms, such as the total number of 
candidates and quota of selected ones. The selected 
candidates could share their components with best 
segments of position, which are then being composed into 
a new particle position to participate in the combining of 
positions. A new component of particle’s position is also 
imported, i.e., best

edP , denoting the electoral best position 

composed by the dimensions of elected candidates. Recall 
that the local attractor in original quantum-behaved PSO 
can be written 

1 1 2 2 1 1 2 2( ) / ( )id id gdP c r P c r P c r c r  


. 

Employing an electoral best position, it can be augmented 
into 

 
(10)
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So the new local attract position could be written as follows: 
 
(11) ' (1 )best best best
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Due to the employment of this component, the particles 
in each sub-swarm therefore update their global best 
position by Eq.(12), which is the result associated with 
minimal fitness value of their local best positions and global 
best positions of electoral swarm. 
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Simulated annealing (SA) is a local search approach 
imported by Kirkpatrick et al., which begins with an initial 
given solution and moves around the neighbors to generate 
a new solution. SA belongs an optimization algorithm based 
on iterative solution strategy importing a probability function 
with Maxwell-Boltzmann distribution to search in the space. 
The physical foundation is the solid annealing process that 
first makes solid reach high temperature, then slows down 
the particles form the cooling for the position of the lowest 
energy. Hence, an optimization problem can be considered 
in a SA perspective, i.e., a minimum energy structure 
related to an optimal solution; a particle structure being a 
problem solution; a structure of energy as the objective 
function values; the terminal and initial temperature 
mapping for the control parameters of the search. The 
concrete phases of SA are shown in the following pseudo-
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code: In this algorithm, as shown in Alg.1, we utilize the SA 
to refine the current position of each sub-swarm after 
composite of different dimensions like the literature. 

 
Algorithm 1. Simulated annealing (SA) 
Input: Cooling schedule with a reduction function T(k) = 

t0(α)k, the current position of each sub-swarm Hid, starting 
temperature t0, final temperature tfinal, and maximum 
generation number nmax; 

Output:; 
Procedure: 
  Initialize a random position Pid of particle; 
  Calculate the cooling function of T(Pid) and T(Hid). 

While t > tfinal Do 
While iter ≤ nmax Do 

Select s as neighbors of Hid; 
σ = T(Pid) - T(Hid); 
If σ < 0 Then Hid = s; 
Else 

Generate r~U(0; 1); 
If r < e−σ/t Then Hid = Pid; 
End If 

End If 
End While 
t = T(k); 

End While 
Return Hid; 

End 
 
Based on the above methods, a variant of algorithm, 

HCQPSO is proposed with the below computing steps. 
 
Algorithm 2. HCQPSO 
Input: Control parameters and cooling function of SA. 
Output: Solution; 
Procedure: 
  Set control parameters and initialize Np sub-swarms. 
  Sub-swarms perform evolutional period independently. 
  Select the optimal particles from different subswarms. 

Combine the components from different dimentions. 
Update all sub-swarms by SA according to Alg.1. 
Check the judgment conditions, if satisfied, then end. 
Check the condition of DVSA, if not satisfied, and then 

go to the second step. 
Calculate the reduced search area by Eq.(6,7). 
Adjust the population scale by Eq.(9). 
Generate a new swarm by electoral mechanism and 

go to the second step. 
Return the optimal solution. 

End. 
 
In this subsection, an analysis of the convergence of 

HCQPSO is provided. We discuss it from two perspectives, 
i.e., search area and population of swarms. Firstly, we 
analyze the varying of interval measure cased by two 
neighboring reduces. According to the policy of DVSA, it can 
be described as follows according Eq.(6,7): 

 

(13) 1 1r r r r
i i i ib a b a     
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From the formula (14), we can see that when search 

area varies, the reduced area becomes the 
r
ik times of 

oringin area. So when serveral genenrations of this 
procedure happens, the final area could be heavily reduced 
with the considerable promotion of efficiency. Secondly, in 
consideration of swarm populations, we have. 
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The above inference shows that as the search area 
decreases, the related populations of swarms also be cut 
down with a certain rate. 

 
Numerical results 

To study the search behavior and its performance of 
HCQPSO with other versions of PSO, such as plain PSO, 
CPSO, and CQPSO, some typical benchmark functions are 
selected as the examples. 

Rastrigin’s function, is frequently used as a test function 
to test the performance of optimization algorithms as in 
Fig.2(a). Based on Sphere function, it uses cosine function 
to generate lots of local optimal points. It is a complex 
multimodal function, and optimization falls into the local 
optimum easily. Griewank function is a spin, inseparable 
variable-dimension multimode function. As the increase of 
its dimension, the scope of local optimum gets narrower so 
that searching global optimum becomes easy relatively. 
Therefore, for Griewank function, it is harder to get solution 
in low dimension than in high dimension. Michalewics 
function is a multi-modal function with parameter m which 
changes the steepness of valleys. The Lévy No. 8 function, 
as shown in Fig.2(b), has one global minimum and, 
approximately, 125 local minima. 

Computational results of variants of PSO used in the 
paper is qualitatively ranked in Table 1. From Table 1, we 
can clearly get that the proposed HCQPSO algorithm 
performed greatly better than the plain PSO and  QPSO. 
Also, compared to the basic Cooperative PSO (CPSO), the 
convergence property has been enhanced by the proposed 
techniques in the paper. 

In Fig.3, the black cycles denote the distribution of 
particles of 2-d Rastrigin’s function in QPSO under DVSA, 
while the red ones express that of HCQPSO with only two 
cooperative sub-swarms. It can be clearly seen that in 
HCQPSO, the search area in each generation of iteration is 
reduced dynamically into the potential rectangles along two 
red lines on horizontal/vertical directions. In addition, we 
can also find that the populations of the latter generations 
has been reduced obviously, which means the lower 
computational complexity meanwhile. 

 

                                         
 
Fig.2. Landscapes of test functions: (a) Rastrigin’s Function, (b) 
Lévy Function 
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Moreover, the convergence ability is also investigated in 
our experiment. Fig.4 illustrates the typical convergence of 
PSO, CPSO, QPSO, CQPSO and HCQPSO on the 
benchmark Michalewics function. From the figure, it can be 
seen that the varying curves of objective values using the 
HCQPSO descend much faster than using plain PSO and 

QPSO. In addition, the fitness values descent to lower level 
by using HCQPSO than CPSO due to the different 
mechanisms of simulated annealing and DVSA.  

The results of the experiments indicated that the 
proposed HCQPSO can lead to more efficiency and stability 
than plain PSO, QPSO, CPSO and CQPSO. 

 
Table.1. Results of functions optimization in benchmark 

Functions PSO QPSO CQPSO HCQPSO 
Min Max Ave Min Max Ave Min Max Ave Min Max Ave 

Rastrigin’s 6.12E-06 9.00E+00 4.67E+00 3.01E+00 8.90E+01 4.91E+01 2.50E+01 1.25E+02 7.52E+01 2.50E+01 2.50E+01 2.50E+01 

Griewank 9.87E-03 1.50E-01 5.04E-02 9.12E-06 8.68E-02 3.86E-04 2.58E-06 4.95E-02 1.56E-02 0 8.04E-10 6.83E-11 

Michalewics -9.284715 -7.846484 -8.387755 -9.375576 -8.195449 -9.006959 -9.613477 -8.394369 -9.237160 -9.660151 -9.660151 -9.660151 

Lévy 0.6663 4.6048 2.3496 0.1019 11.5187 2.2827 3.27E-05 2.94E-04 1.48E-04 2.01E-05 6.37E-04 2.38E-04 

 
 

 
Fig.3. Particles in 2-d Rastrigin’s Function in QPSO and HCQPSO 
under DVSA 
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Fig.4. Evolution curves of HCQPSO and other PSO variants 
 
Conclusion 

This paper proposes a novel variant of QPSO called 
hybrid cooperative quantum particle swarm optimizer, and 
explores how to vary the search area dynamically in the 

view of space reduce. Moreover, simulated annealing is 
also integrated in the position update to avoid being trapped 
in the local optimum. Both the theoretical analysis and 
experimental results on benchmark functions show that this 
algorithm is more efficient than other versions of particle 
swarm optimizers.  
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