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A mathematical model of a synchronous drive with protrude 
poles, an analysis using variational methods 

 
 

Abstract. In the paper a mathematical model of a synchronous drive with protrude poles in physical cooeridantes of magnetic couplings. The system 
is considered as having concentrated parameters. For formulation of differential state equations a novel interdisciplinary method based on a 
modification of the well-known Hamilton-Ostrogradsky principle. On the basis of the model the transient states of the drive system with synchronous 
motor were analyzed. The results of computer simulations were presented in the graphical form.  
 
Streszczenie. W pracy przedstawiono model matematyczny napędu synchronicznego o biegunach jawnych w fizycznych współrzędnych sprzężeń 
magnetycznych. System rozpatrywany jako układ o parametrach skupionych. Dla sformułowania różniczkowych równań stanu wykorzystano nawą 
interdyscyplinarną metodę, która bazuje na modyfikacji znanej zasady Hamiltona-Ostrogradskiego. Na podstawie modelu poddano analizie stany 
nieustalone pracy układu napędowego z silnikiem synchronicznym. Wyniki symulacji komputerowej przedstawiono w postaci graficznej. (Model 
matematyczny napędu synchronicznego z biegunami jawnymi, analiza z zastosowaniem metod wariacyjnych). 
 
Słowa kluczowe: zasada Hamiltona-Ostrogradskiego, Euler-Lagrange’a systemy, napęd synchroniczny, nieliniowe równania różniczkowe. 
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Introduction 

Synchronous drives play a significant role in heavy 
industry. One of their advantages is their constant rotational 
velocity in a wide range of changes of load moment, what is 
particularly important in heavy work regimes, e.g. drives of 
drilling machines, mine drives, elevators, rolling mill 
machines, fans, etc. [2]. But the main applications of these 
machines are energy sources in different power engineering 
stations. There exist two types of synchronous machines: 
the first one – machines with high rotational velocity – are 
turbogenerators and turbomotors with hidden poles. For 
those machines the stators are produced for one or two 
pole pairs. Another type are machines with low rotational 
velocity (with protrude poles), which have more than two 
pole pairs. 

In the present paper a mathematical model of a 
synchronous model in physical coordinates of magnetic 
couplings, the so-called  -model is presented. One 
important aspect is that the model is based on a 
modification of the well-known Hamilton-Ostrogradsky  
principle [1, 4], what makes it possible to avoid 
decomposition of the uniform electromechanical system. 
Such approach is useful in multi-machine electromechanical 
systems, when load moments of the motors are rather 
complicated. 

The aim of the paper is to develop a mathematical 
model of synchronous drive with protrude poles, starting 
from an interdisciplinary method, as well as to analyze 
electromechanical states on the basis of the developed 
model. 
 
Mathematical model of the system. 

 In the mathematical model, the coordinate system 
related to rotor, i.e. (d,q) system is used [3]. In the 
generalized coordinates it was assumed: electric charges in 

motor windings 1 3 1 3q Q  ; 4 4 Dq Q Q   – charge of 

attenuation circuit along d axis of the rotor, 5 5 Qq Q Q   – 

charge of attenuation circuit along q axis of the rotor, 

6 6 fq Q Q   – charge of excitation circuit along d axis of the 

rotor; rotation angle of the rotor and the driven inertial 
component – 7q   . By analogy, the currents in those 

widings have been introduced 1 6 1 6q i   and the rotational 

velocity of rotor and the driven mechanism 7q   , where 

k  – the number of generalized coordinates ie. three 
currents in the stator winding , ,SA SB SCi i i , three currents in 

the rotor winding , ,D Q fi i i  and a single one rotational 

velocity, ie. together 7k  . 
It should be remembered that the rotor of the 

synchronous motor includes a cage winding for 
asynchronous start-up [3] or for decreasing motor 
vibrations, if the machine operates as generator.  

In the theory of electric machines a multi-phase system 
of rotor currents is replaced with an equivalent three-phase 
system. Such approach results in a substantial 
simplification of mathematical modelling at the same time it 
does not influence the results of simulation calculations.  
 For the assumed electromechanical system the 
Lagrangian components [1] are given with the relationships: 
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where: *T  – kinetical coenergy, *P  – potential energy, *  
– dissipation energy, *D  – energy of external forces, EMM  

– elektromagnetic moment of the motor, ( )M   – load 

moment of the drive, J  – total inertial moment of the 

electric drive, Q  – circuit charge, i Q   – circuit current,   
– total magnetic coupling, RS– resistance of stator winding, 
  – total magnetic coupling; Rn– resistances of rotor 
windings, Su  – phase voltage of motor supply, fu – 

constant supply voltage of the rotor,   – additional 

integration variable ( , , ,SA SB SCQ Q Qq  T, , , )D Q fQ Q Q  ; 
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( , , ,SA SB SCi i iq T, , , )RA RB RCi i i   – columnar vectors of 

generalized coordinates and velocities. 
The Hamilton variation of action functional [1, 4] was 

equated to zero: 

 (4)  
1 1

* *

0 0

0

t t

S L dt L dt       . 

The Hamilton variation of action function shall be equal 
to zero only in the case, when the dynamical system is 
subject to Euler-Lagrange equations [2] 
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where *L  – modified Lagrange function [1]. 
 

On the basis (1) – (3) the Lagrangian was obtained, 
which was substituted next to Euler-Lagrange equation, 
obtaining finally: 
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The state equations have the following form: 
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The equations of magnetic couplings were written in the 
form  
[1, 3] 
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where: ,S Rψ ψ  – columnar vectors of fundamental 

(working) magnetic couplings of stator and rotor, 

respectively, ( 1 1,S S R R
  α L α L ) – matrices of inverse 

inductances of winding dissipation of stator and rotor, 
respectively; B  – topological matrix. 
 

We shall write down the equation of stationary magnetic 
coupling between fundamental couplings of stator and rotor, 
respectively [1]: 

 (13) 1 T, , ( , )R S S d q
     ψ Πψ ψ ψ Π ψ ψ . 

On the basis of the second Kirchhoff law for magnetic 
circuits: 

 (14) 1 T( ) , ( ) , , ( )S S R
    ψ L i i ψ Π L i i i Πi B i i i ψ , 

where Π  - Park matrix. 

Expression (14) including (11), (12) takes the form: 

(15)   1 T( ) ( ) (S S R R
   ψ L i Πα Ψ Π ψ B α Ψ Bψ . 

Finally the algebraic equation follows 

(16)    1T( )( )S R


   ψ 1 L i α B α B  

 T( ) S S R R L i Πα Ψ B α Ψ . 

In the case of linear dependence between 
magnetization currents and magnetic couplings the 
algebraic equation (16) takes the form: 
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Currents in the stator and rotor windings on the basis of 
relationships (11) and (12) are given with 

 (19).  1( ), ( )S S S R R R
   i α Ψ Π ψ i α Ψ Bψ . 

The start-up moment of the synchronous motor is 
calculated from [1]: 

 (20).  03 ( )E SA SB SB SAM p i i   ,  

The full model of the drive system is described with 
differential equations: (8) – (10), (17) including (14), (18) – 
(20). 

 

Results of computer simulations  
For numerical analysis a synchronous fan drive with 

parameters: 630NP   kW, 750Nn   ob/min; 6NU   kV; 

42fu   V was assumed. The load moment of the motor 

5 3 11 55,007 14,8 10 2,21 10OM        .  

In Fig. 1 the rotational velocity of the synchronous motor 
as function of time is presented. From the analysis of the 
Figure it follows, that for the fan synchronous drive the 
asynchronous state is unstable, what leads to oscillations 
with relatively high amplitude. This vibration amplitude is 
caused by complicated electromagnetic processes in the 
synchronous machine, what is depicted in Fig. 2. The 
amplitude of moment oscillations reaches 4 kNm and its 
own frequency is about 2 Hz. 

 

 
Fig. 1. Transient dependence of rotational velocity versus time for 
the synchronous drive  
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Fig. 2. Transient start-up moment for the synchronous motor  
 

 
Fig. 3. Transient current in the phase A of the stator  
 

Fig. 3 depicts the dependence of current in the phase A 
of the stator on time, whereas Fig. 4 the dependence of 
excitation current of the motor on time. From the analysis of 
these dependencies it can be stated, that high oscillations 
of current in the asynchronous state of the machine are 
visible, what is the result of current oscillations in the stator 
windigns. Such dependence of current is directly related to 
the reaction of machine armature. 
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Fig. 4. Transient current of excitation rotor  
 

 
Fig. 5. Transient current in the attenuation winding of the rotor 
along d axis 
 

In Fig. 5 the current in the attenuation winding in the d 
axis is shown. During start-up the oscillation frequency in 
the rotor cage drops from 50 Hz downto 1-2 Hz (in the 
asynchronous state). Oscillations of the current and its 
amplitude in the rotor cage in the range [22 40]t   are 

related to oscillations of current in the armature, i.e. to the 
armature reaction. Fig. 6 depicts transient current in the 

attenuation winding in the q axis. Here the transient 
dependences are similar to those in Fig. 5. Analyzing the 
aforementioned Figures it can be stated, that in the 
synchronous state all electromechanical processes fade out 
to constant values, what corresponds fully to the classical 
theory of electric machines.  
 

 
Fig. 5. Transient current in the attenuation winding of the rotor 
along q axis 
 
Conclusions 

1. Application of novel interdisciplinary method, 
developed in Ref. [1] made it possible to develop a 
mathematical model of the synchronous drive, avoiding at 
the same time the decomposition of the uniform 
electromechanical system, what is very efficient during 
modelling of multi-machine electromechanical systems, 
whose one component are synchronous machines. 

2. On the basis of computer simulations realistic 
depictions of movements of functional dependencnies of the 
electromechanical system  were obtained, what gives 
foundations for the analysis of those systems. 

3. On the basis of computer simulations complicated 
physical processes in the synchronous drive were analyzed. 
Transient processes in the asynchronous drive were 
described, what of practical importance during analyses of 
similar systems, which include elastic mechanical 
components, e.g. a long elastic shaft, elastic clutches, lines, 
etc.  

 
LITERATURA 

[1] Chaban  A. Modelowanie matematyczne procesów 
oscylacyjnych w systemach elektromechanicznych. (Wydanie 
drugie, zmienione i uzupełnione). – Lwów: W-wo T. Soroki 
2008. – 328 s.  

[2] Kharchenko E. Procesy dynamiczne w maszynach 
górniczych. – Lwów: Sweet, 1991. – 176 s.  

[3] Rusek  A. Model symulacyjno-komputerowy asynchronicznego 
silnika indukcyjnego z uwzględnieniem w modelu 
matematycznym nasycenia i zjawiska wypierania prądu, 
Przegląd Elektrotechniczny R. 86 NR 12/2010, s.127-130. 

[4] Or tega  R., Lo r ia  A., N ick lasson  P.J., S i ra -Rami re z H. 
Passivity-Beast Control of Euler-Lagrange Systems: 
Mechanical, Electrical and Electromechanical Applications. 
London: Springer Verlag, 1998, 543 s 

 
Autorzy: prof. nadzw., dr hab. inż. Andriy Czaban, Politechnika 
Częstochowska, Wydział Elektryczny, al. Armii Krajowej 17, oraz 
Politechnika Lwowska, katedra mechaniki i automatyzacji budowy 
maszyn, ul Bandery, 12, Lwów, Ukraina, E-mail: 
atchaban@gmail.com; prof. nadzw., dr hab. inż. Andrzej Rusek, 
Politechnika Częstochowska, Wydział Elektryczny, al. Armii 
Krajowej 17, E-mail: rusek@el.pcz.czest.pl; dr. inż. Marek Lis 
Politechnika Częstochowska, Wydział Elektryczny, al. Armii 
Krajowej 17 lism@el. pcz.czest.pl. 


