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Abstract. During the past decade, hybrid algorithms combining evolutionary computation and constraint-handling techniques is one of the most 
popular method to solve constrained optimization problems. Usually, penalty functions are often used in constrained optimization. But it is difficult to 
strike the right balance between objective and penalty functions. As a novel population-based algorithm, invasive weed optimization (IWO) algorithm 
has gained wide applications in a variety of fields, especially for unconstrained optimization problems. In this paper, a hybrid IWO (HIWO) with a 
feasibility-based rule is proposed to solve constrained optimization problems. The feasibility-based rule does not need additional parameters, which 
is different from penalty functions. In addition, the complex method is used to provide direction for weed evolution, which can accelerate the 
convergence speed. Simulation and comparisons based on several well-studied benchmarks demonstrate the effectiveness, efficiency and 
robustness of the proposed HIWO. 
 

Streszczenie. W artykule przedstawiono opracowaną metodę optymalizacji z funkcją kosztu, bazującą na hybrydowej metodzie IWO (ang. Hybrid 
Invasive Weed Optimizastion) oraz regułach związanych z wykonalnością. Zasady wykonalności, w przeciwieństwie do funkcji kar, nie wymagają 
dodatkowych parametrów. Dodatkowo zastosowano kompleksową metodę określania kierunki ewolucji trawy w algorytmie IWO, co pozwala na 
przyspieszenie konwergencji. Przeprowadzone badania symulacyjne i porównawcze dowodzą skuteczności i sprawności proponowanej metody 
HIWO. (Optymalizacja hybrydowa IWO z wykorzystaniem reguł wykonalności w optymalizacji z funkcją kosztu). 
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Introduction 
Constrained optimization problems are very important 

and frequently appear in many science and engineering 
disciplines, such as pressure vessel design problem [1], 
welded beam problem [2], reliability optimization problems 
[3] and so on. The aim of constrained optimization problems 
is to search for better objective values decided by feasible 
solutions that need to satisfy. Generally, a constrained 
optimization problem can be described as equation (1).  
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where iLx  and iUx  are the lower bound and upper bound 

of the decision vector x , 
gN is the number of inequality 

constraints and 
hN is the number of equality constraints. In 

a common practice, an equality constraint ( ) 0qh x  can 

be replaced by | ( ) | 0qh x   ,  is a small tolerant 

amount. Therefore all constraints can be transformed to 

c g hN N N  inequality constraints. x is a feasible 

solution if it satisfies all the constraints. 
There exist many studies on solving constrained 

optimization problems, and the traditional mathematical 
methods are based on the derivative information of the 
objective function and constraints, such as the Gradient 
Projection methods and the Lagrange multiplier methods 
[4]. The main problems are that these methods are 
sensitive to initial values and need derivative information of 
the objective function, while some reality problems have no 
explicit mathematical expression and the feasible region is 
not connected, so these methods are powerless to them. In 
recent years, evolutionary algorithms have attracted much 
attention for constrained optimization problems due to their 
well balance between the exploration and exploitation of the 
whole search space. Besides, evolutionary algorithms are 
not need the objective function to be derivable or 
continuous search space. 

So far, a number of constraint handling techniques have 

been proposed to incorporate with evolutionary algorithms 
to solve constrained optimization problems. One of the most 
popular constraint handling techniques is the penalty 
function method due to its simple principle and ease to 
implementation. The violations of constraints of the 
solutions are incorporated into the objective function so that 
the original constrained problems are transformed into 
unconstrained ones. Homaifar A et al. [5] proposed an 
approach where penalty factors are set to different values 
for each level corresponding to the violations of constraints 
and are not depend on the evolution iterations. In [6], Joines 
J, et al put forward a penalty factors changed with evolution 
iterations scheme, which aimed at performing wide 
exploration of the search space at the early stage and 
gradually guided the search to focus on the feasible region. 
Although penalty function method is ease to 
implementation, better penalty factors are hard to be 
selected. So some self-adaptive techniques are proposed to 
avoid the trial and error process of tuning factors. Huang F 
et al [7] proposed a co-evolution particle swarm 
optimization, where one swarm evolution decision solutions 
and another evolution penalty factors. In generally, self-
adaptive techniques can obtain better performance due to 
penalty factors adjusted dynamic depend on the feedback 
information in evolution process. 

Apart form the penalty function method, there are 
several novel techniques have been incorporated into 
evolution algorithms to handle constraints. Deb [8] 
proposed a select operator that no penalty factor is needed 
and three rules are adapted to compare decision solution. 
Motivated by [8], Qie He and Ling Wang [9] proposed a 
feasibility-based rule to solve constrained optimization 
problems and simulated annealing is adapted to incorporate 
with PSO. Runarsson and Yao [10] proposed a stochastic 
ranking method. In [11], constrained optimization problems 
are transformed to multi-objective optimization problems by 
Coello. 

In 2006, a novel stochastic optimization model, invasive 
weed optimization (IWO) algorithm [12], was proposed by 
Mehrabian and Lucas, which is inspired from a common 
phenomenon in agriculture: colonization of invasive weeds. 
Not only it has the robustness, but also it is easy to 
understand and program. So far, it has been applied in 
many fields mainly for unconstrained continuous 
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optimization problems [13-23][30-31]. As for constrained 
optimization problems, relatively less work based on IWO 
can be found than those based on other kinds of evolution 
algorithms. Zhang Qing et al [24] used IWO to optimize 
Speed Reducers with the same constraint handling 
techniques described in [8]. Su Shou-bao [25] proposed an 
invasive weed optimization algorithm with penalty function 
strategy to deal with constrained engineering design 
problems. 

In this paper, a hybrid IWO with a feasibility-based rule 
(HIWO) is proposed to solve constrained optimization 
problems. The feasibility-based rule does not need 
additional parameters, which is different from penalty 
functions. In addition, the complex method is used to 
provide direction for weed evolution, which can accelerate 
the convergence speed. 

The rest of the paper is organized as follows. In Section 
2, IWO, the feasibility-based rule and Complex method are 
simply introduced. In Section 3, the HIWO is proposed. Si-
mulation and comparisons are presented in Section 4, and 
the conclusions and future work are provided in Section 5. 
 
IWO,  Feasibility-Based Rule and Complex Method  

IWO 
In the basic IWO, weeds represent the feasible solutions 

of problems and population is the set of all weeds. A finite 
number of weeds are being dispread over the search area. 
Every weed produces new weeds depending on its fitness. 
The generated weeds are randomly distributed over the 
search space by normally distributed random numbers with 
a mean equal to zero. This process continues until 
maximum number of weeds is reached. Only the weeds 
with better fitness can survive and produce seed, others are 
being eliminated. The process continues until maximum 
iterations are reached or hopefully the weed with best 
fitness is closest to optimal solution. 

The process is addressed in details as follows: 
Step 1 Initialize a population 

A population of initial solutions is being dispread over 
the D dimensional search space with random positions. 

Step 2 Reproduction 
The higher the weed’s fitness is, the more seeds it 

produces. The formula of weeds producing seeds is 
 

(2)               min
max min min

max min

( )n

f f
weed s s s

f f


  


 

where f is the current weed’s fitness maxf and minf  

respectively represent the maximum and the least fitness of 

the current population. maxs and mins  respectively 

represent the maximum and the minimum number of seeds 
that the current population can produce. 

Step 3 Spatial dispersal 
The generated seeds are randomly distributed over 

the D dimensional search space by normally distributed 
random numbers with a mean equal to zero, but with a 
varying variance. This ensures that seeds will be randomly 
distributed so that they abide near to the parent plant. 
However, standard deviation ( ) of the random function 
will be reduced from a previously defined initial value 

( init ) to a final value ( final ) in every generation. In 

simulations, a nonlinear alteration has shown satisfactory 
performance, given as follows 
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where, itermax is the maximum number of iterations, cur is 
the standard deviation at the present time step and n is the 
nonlinear modulation index. Generally, n  is  3. 
Step 4 Competitive exclusion 

After passing some iteration, the number of weeds in a 
colony will reach its maximum ( _P MAX ) by fast 

reproduction. At this time, each weed is allowed to produce 
seeds. The produced seeds are then allowed to spread 
over the search area. When all seeds have found their 
position in the search area, they are ranked together with 
their parents (as a colony of weeds). Next, weeds with 
lower fitness are eliminated to reach the maximum 
allowable population in a colony. In this way, weeds and 
seeds are ranked together and the ones with better fitness 
survive and are allowed to replicate. The population control 
mechanism also is applied to their offspring to the end of a 
given run, realizing competitive exclusion. Figure 1 is the 
flowchart of IWO. 

 

 
.                      
 Fig.1. Flowchart of IWO 

 

The feasibility-based rule 
Although penalty function method is easy to implement, 

suitable penalty factors that affected its performance are 
difficult to determine and problem-dependent. 

Motivated by [9], a feasibility-based rule is employed in 
this paper to handle constraints, which is described as 
follows: 

(1) Any feasible solution is preferred to any infeasible 
solution. 

(2) Between two feasible solutions, the one having 
better objective function value is preferred. 

(3) Between two infeasible solutions, the one having 
smaller constraint violation is preferred. 

Based on the three criteria, there is no need to use penalty 
factors at all. It can be see that objective function and 
constraint violation information are considered separately. 
Moreover, the search tends to the feasible region rather 
than infeasible region in the first and the third cases, and it 
tends to the feasible region with good solution in the second 
case. So, additional fitness function is not need to design, 
and the objective function value is the fitness of IWO. 
 
Complex method 

Simplex Method which is transformed for solving 
constrained optimization by M. J. Box in 1965 is called 
Complex Method. It was demonstrated to be easily applied 
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and effective in obtaining optimum solutions as compared 

with other methods.Suppose arrange 1 2( , , , )nx x x  

sorted by ascending order is set of vertex of Complex,. The 
key step of Complex Method is as follow: 

Step 1 Calculate the centroid cx  

(4)              
1

1
( )

1

n

c i n
i

x x x
n 

 
   

Step 2 Calculate the reflecting point rx  

(5)             ( )r c c nx x x x    
where   usually set to 1.3 is reflectance. If objective 

function value )()( nr xfxf  , then nx  will be replaced by 

rx and go to Step 3, otherwise go to Step 4. 

Step 3 Extend operation 

(6)          ( )e r r cx x x x    

where  is lengthening coefficient [0.5,0.8]  . If 

objective function value )()( ne xfxf  , then nx will be 

replaced by ex and go to Step 1, otherwise go to Step 4. 

Step 4 Compress operation 

(7)        ( )s n c nx x x x    

where  usually set to 0.7 is contraction coefficient. Check 

whether the objective function value )()( ns xfxf  , if true, 

nx will be replaced by sx and go to Step 1, otherwise 

constructed new complex again. 
  Step 5  Repeated more than implementation process, 
complex then convergence, so every time form the new 
complex, each times should be discriminant, the 
discriminant as  
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where 0 . When above inequality was founded, we can 
stop calculate, output the optimal solution. 
 

HIWO Hybrid Strategy  
Updating strategy 

In this paper, the constraint violation value of a decision 
solution is calculated as follows: 

(9)        
1

( ) [max( ( ), 0)]
cN

j
j

viol x g x


   

If ( ) 0viol x  , x is feasible solution, otherwise it is infeasible 

solution. In reproduction case, population is divided into two 
parts. One part is feasible solution set, another is infeasible 
solution set. Then the two parts reproduce seeds 
respectively, and the feasible solution produce more seed, 
while the infeasible solution produce less seed. In detail, 

maxs  and mins  respectively represent the maximum and the 

minimum number of seeds that the current population can 

produce, then maxs and max min( ) / 2s s  will be the 

maximum and the minimum number of seeds that the 

feasible set can produce, max min( ) / 2s s  and mins  will be 

the maximum and the minimum number of seeds that the 
infeasible set can produce. 

After reproduction, the feasible solution and infeasible 
solution set will be sort again with their offspring, because 

the offspring of a feasible solution may be infeasible 
solution, an infeasible solution’s offspring may be feasible 
solution. In competitive exclusion, if the number of the 
feasible solution reaches the maximum allowable 
population in a colony, then better feasible solution will be 
selected as next generation, otherwise, if there are some 
feasible solutions but the number is not reach the 
maximum, the feasible solutions and some infeasible 
solutions with smaller constraint violation values are 
selected as next generation. Obviously, if there is no 
feasible solution in current population, infeasible solutions 
with smaller constraint violation values are selected as next 
generation. In brief, the better the object function value of a 
feasible solution, the greater the opportunity of being 
selected, the smaller the constraint violation values of an 
infeasible solution, the greater the chance of being selected. 

 
Complex method-based local search 

The complex method is a multivariable, direct-search 
technique that is efficient and convenient in optimizing 
problems with nonlinear objective functions subject to 
inequality constraints on explicit or implicit variables. This 
method has been applied successfully too many problems 
in the chemical industry. 

In HIWO, after competitive exclusion of IWO, we use the 
complex method to optimize population that will go to next 
generation, because the complex method could provide 
direction for weed evolution. Let _feasible num  be the 

number of feasible solution after competitive exclusion, and 

  the threshold value. If _feasible num  , then feasible 

solutions are selected and evolution with complex method, 
else infeasible solutions are selected and evolution with 
complex method. The step of complex method is according 
to section 2.3. 

When use the complex method guide feasible, the 
object function value are used to compare between two 
seeds, and when use the complex method guide infeasible, 
the constraint violation value are used to compare between 
two seeds. In this way, both the results are better than 
before without using complex method. 

 
Simulation experiments and results analysis 

In this section, numerical simulations are carried out to 
investigate the performances of the proposed HIWO, where 
12 constrained benchmark functions are used for testing 
[10]. The experimental program testing platform as: 
Processor: CPU Intel Core i3-370, Frequency: 2.40GHz, 
Memory: 4GB, Operating system: Windows 7, Run 
software: Matlab7.6. Parameters settings are given by 
Table1. 

 
Table 1. Parameters settings 

Parameter 
meaning 

Variable Value 
Parameter 
meaning 

Variable Value 

The initial 
number of 
population 

_G SIZ E  20 

The 
maximum 
number of 

seed 
generated 

_maxseed  10 

The 
maximum 
number of 
population 

_P MAX  30 

The 
minimum 
number of 

seed 
generated 

_minseed  1 

The 
maximum 
iteration 
number 

_maxiter  1000 

The 
nonlinear 

modulation 
index 

n  4 
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The influence of complex method 
To test the influence of complex method, function g02 

are selected to investigate the performance. Let nf  be the 

times of feasible solutions optimized by complex method 

and infn  be the times of infeasible solutions optimized by 

complex method. Both nf  and infn  are integer and 

ranked in [0,7] . For each pair nf  and infn , g02 function 

runs 20 times independently.In order to facilitate 
observation, Figures from 2 to 5 give the comparison 
histogram about results of maximum, average, minimum 

and standard deviation obtained by each pair nf  and infn . 
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Fig.2. The histogram of maximum 
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Fig.3. The histogram of average 
 

For Figure 2 (a), the first column is both nf  and infn  

equal 0 , that is the basic IWO, when nf  increase steadily, 

not all results can reach to the optimal. The same situation 

emerge other histograms, for example, in Figure 2 (h), infn  

equal 7  and when nf  increase steadily, not all results can 

reach to the optimal also. Then we survey the first column 

of 8 histograms in Figure 2, when nf  is 0 , no matter what 

infn equal, the results can reach to the optimal all. That is to 

say, the effect of nf  is bigger than infn  for g02. 

In the same way, for each histograms of Figure 3, the 

average value do not improve with the increase of nf , 

while the result is stable when nf  equal 0  and infn  

increase steadily, which also point out that the effect of nf  

is bigger than infn  for g02. 

From Figure 4, we can see from each histogram that the 

value with nf  equal 0  is better than nf  equal other 

values. The same situation emerges in Figure 5. In addition, 

From Figure 2,3,4,5, when nf  equal 0  and infn  equal 3 , 

the maximum, average, minimum and standard deviation 
are all better than others. 
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Fig.4. The histogram of minimum 
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Fig.5. The histogram of standard deviation 
 

Figure 6 gives the box plot about errors with nf  

equal 0  and infn  equal different values. The first column is 

the basic IWO. We can see that, the result with infn  equal 

3  is better than others.  Figure7 to Figure12 give some test 
functions’ curve evolution diagram about IWO and HIWO. 
From the figures, we can see that the convergence speed 
of HIWO is faster than IWO. So, the complex method is 
effective. 
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Fig.6. The box plot about errors with nf  equal 0  
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Fig.7. Curve evolution diagram of g01 
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Fig.8. Curve evolution diagram of g02 
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Fig.9. Curve evolution diagram of g03 
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Fig.10. Curve evolution diagram of g04 
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Fig.11. Curve evolution diagram of g08 
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Fig.12. Curve evolution diagram of g12 
 
Comparison with other algorithm 

To investigate the performances of the proposed HIWO, 
RY proposed in [10], KM proposed in [26], SAFF proposed 
in [27], SMES proposed in [28], ICMOA proposed in [29] are 
selected to compare with HIWO. In this paper, all equality 
constraint ( ) 0qh x  has been replaced by | ( ) | 0qh x   , 

using the degree of violation 1 4e   .  

Table 2 is the settings of nf and infn .Table 3 gives the 

results of 12 functions obtained by these 6 algorithms. 
Table 3 gives the conclusion that the best results 

obtained by RY, SAFF, SMES, ICMOA and HIWO are 
better than KM. For g01, g03, g04, g08, g11, g12, RY, 
SAFF, SMES, ICMOA and HIWO can get optimal in every 
run. For g02, ICMOA and HIWO can obtain the better result 
than other 4 algorithms; what’s more, the standard deviation 
of HIWO is 1.5E-02, which is better than 5 other algorithms. 
In other words, the robustness of HIWO is better. For g05, 
result obtained by ICMOA is same with HWIO. For g06, g07 
and g09, the standard deviation of HIWO is better than 
other 5 algorithms. Although the result of g10 obtained by 
HIWO is worse than ICMOA, it is better than other 4 
algorithms, in addition, the best result of g10 obtained by 
HIWO is close to that obtained by ICMOA. In a word, the 
algorithm proposed in this paper is effective and 
robustness. 

Table 2.  The settings of nf and infn  for 12 test functions 

 g01 g02 g03 g04 g05 g06 g07 g08 g09 g10 g11 g12 

nf  7 0 1 2 4 2 0 4 1 3 2 1 

infn  1 3 5 0 0 5 2 1 1 6 0 0 
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Table 3. Results obtained by RY, SAFF, SMES, ICMOA and HIWO 
Function 

name 
result KM RY SAFF SMES ICMOA HIWO 

g01 

Best 
Average 

Worst 
Std 

-14.7864 
-14.7082 
-14.6154 
3.1E-02 

-15.000 
-15.000 
-15.000 

0 

-15.000 
-15.000 
-15.000 

0 

-15.000 
-15.000 
-15.000 

0 

-15.000 
-15.000 
-15.000 

0 

-15.000 
-15.000 
-15.000 

0 

g02 

Best 
Average 

Worst 
Std 

0.79953 
0.79671 
0.79119 
7.0E-03 

0.803515 
0.782134 
0.721254 
3.7E-02 

0.80297 
0.79121 
0.72157 
1.9E-02 

0.803601 
0.784257 
0.750984 
3.8E-02 

0.803619 
0.789512 
0.697845 
6.5E-02 

0.803618 
0.782741 
0.760555 
1.5E-02 

g03 

Best 
Average 

Worst 
Std 

0.9997 
0.9989 
0.9978 
9.5E-04 

1.0000 
1.0000 
1.0000 

0 

1.0000 
1.0000 
1.0000 

0 

1.0000 
1.0000 
0.999 

3.7E-05 

1.0000 
1.0000 
1.0000 

0 

1.0000 
1.0000 
1.0000 

0 

g04 

Best 
Average 

Worst 
Std 

-30664.5 
-30665.3 
-30645.9 
1.4E+00 

-30665.539 
-30665.539 
-30665.539 

0 

-30665.50 
-30664.20 
-30663.30 
2.3E-01 

-30665.539 
-30665.539 
-30665.539 

0 

-30665.539 
-30665.539 
-30665.539 

0 

-30665.539 
-30665.539 
-30665.539 

0 

g05 

Best 
Average 

Worst 
Std 

-- 

5126.497 
5129.126 
5146.254 
5.3E+00 

5126.989 
5431.884 
6081.547 
4.0E+03 

5126.610 
5237.693 
5302.656 
4.9E+01 

5126.4981 
5126.4981 
5126.4981 

0 

5126.4981 
5126.4981 
5126.4981 

0 

g06 

Best 
Average 

Worst 
Std 

-6952.141 
-6342.667 
-5473.982 
7.4E+02 

-6961.814 
-6874.457 
-6352.867 
8.9E+01 

-6961.800 
-6961.800 
-6961.800 

0 

-6961.814 
-6961.284 
-6960.482 
5.3E-01 

-6961.814 
-6961.817 
-6960.945 
3.8E-03 

-6961.812 
-6961.808 
-6961.803 

3E-03 

g07 

Best 
Average 

Worst 
Std 

-- 

24.307 
24.371 
24.638 
2.8E-02 

24.48 
26.53 
28.46 

7.3E-01 

24.327 
24.471 
24.833 
6.5E-01 

24.306 
24.311 
24.324 
1.3E-01 

24.309 
24.338 
24.412 
3.2E-02 

g08 

Best 
Average 

Worst 
Std 

0.095825 
0.089156 
0.029143 
4.5E-01 

0.095825 
0.095825 
0.095825 
5.3E-11 

0.095825 
0.095825 
0.095825 
3.7E-08 

0.095825 
0.095825 
0.095825 

0 

0.095825 
0.095825 
0.095825 

0 

0.095825 
0.095825 
0.095825 

0 

g09 

Best 
Average 

Worst 
Std 

680.91 
681.16 
683.18 
3.1E-01 

680.630 
680.656 
680.763 
2.1E-02 

680.64 
680.72 
680.87 
4.9E-02 

680.632 
680.643 
680.719 
1.7E-02 

680.630 
680.632 
680.671 
8.3E-03 

680.6301 
680.6333 
680.6440 
4.4E-03 

g10 

Best 
Average 

Worst 
Std 

-- 

7054.316 
7559.192 
8835.655 
4.5E+02 

7061.34 
7627.89 
8288.79 
3.9E+02 

7051.903 
7253.047 
7638.366 
9.2E+01 

7049.284 
7049.289 
7049.291 
1.7E-01 

7049.376 
7055.881 
7065.185 

5.2 

g11 

Best 
Average 

Worst 
Std 

0.750 
0.750 
0.750 

3.4E-05 

0.75 
0.75 
0.75 

2.5E-08 

0.75 
0.75 
0.75 

5.2E-07 

0.75 
0.75 
0.75 

2.1E-15 

0.75 
0.75 
0.75 

0 

0.75 
0.75 
0.75 

0 

g12 

Best 
Average 

Worst 
Std 

1.000 
0.9991 
0.9919 
2.6E-01 

1.000 
1.000 
1.000 

0 

1.000 
1.000 
1.000 

0 

1.000 
1.000 
1.000 

0 

1.000 
1.000 
1.000 

0 

1.000 
1.000 
1.000 

0 

 
Conclusions 

This paper proposed a novel hybrid invasive weed 
optimization with a feasibility-based rule, which provides an 
effective alternative for solving constrained optimization 
problems to overcome the weakness of the penalty function 
methods. Simulation results and comparisons showed that 
our proposed HIWO is of good performances in terms of 
searching quality, efficiency and robustness. The future 
work is to study the adaptive HWIO and to solve the multi-
objective constrained optimization problems.                                                                                             
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