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Abstract. In this paper a forecasting model based on an incremental update scheme is proposed for the hourly load demand of the next day, using 
least square support vector machines (LS-SVM). The model is based on historical daily load demands in combination with calendar and climate 
features. The presented model was tested on real-life load data and the results show that the proposed approach can, by catching the evolving 
nature of the load pattern and dynamically updating the training set with new instances, lead to significant improvements in the accuracy of load 
forecasts. 
 

Streszczenie. W artykule opisano opracowany model przyrostowy do przewidywania godzinowego zapotrzebowania na energię elektryczną na 
dzień następny, w którym wykorzystano maszynę wektorów pomocniczych LS-SVM. Proponowany model bazuje na wcześniejszych danych, 
dotyczących zapotrzebowania dziennego w połączeniu z analizą kalendarza i warunków klimatycznych. Badania eksperymentalne na rzeczywistych 
danych pozwala na skuteczne przewidywanie obciążenia energetycznego. (Model LS-SVM w predykcji obciążenia elektrycznego – przyrostowa 
metoda uczenia). 
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Introduction 
Nowadays, with the privatization and deregulation of 

electricity networks, accurate electric load forecasting has 
an even more important role in the planning, operation and 
control of electric power systems. Usually, the short-term 
load forecast (STLF) is related to the hourly prediction of 
electricity load demand for a time period from one hour to a 
few days in advance. Many operating decisions rely on 
accurate STLF, such as generation capacity scheduling, 
scheduling of fuel and coal purchases, system security 
analysis, energy transaction planning, etc. It also plays a 
significant role in the coordination of hydro-thermal 
systems, generator maintenance scheduling, load flow 
analysis, etc. Therefore, improving STLF accuracy is crucial 
for increasing the efficiency of energy systems and reducing 
operational costs. 

However, STLF is a complex problem because of load 
nonlinear relationships with other factors such as weather 
conditions, social activities, seasonal factors, past usage 
patterns and calendar features. Each of these factors has a 
significant impact on future load.  

In recent decades, many STLF methods have been 
developed. These methods can generally be classified in 
one of three categories: conventional methods, artificial 
intelligence techniques and hybrid methods. The most 
frequently used conventional techniques are linear 
regression methods [1], exponential smoothing [2], the Box-
Jenkins ARIMA approach [3] and the Kalman filter [4]. 
Artificial intelligence based techniques include neural 
network models [5], expert system models [6], fuzzy 
inference [7], support vector machines [8], least squares 
support vector machines [9] and relevance vector machines 
[10]. Hybrid models have been presented for STLF in [11-
15].  

LS-SVMs, proposed in [16], as reformulations of 
standard SVMs, instead of solving the quadric programming 
(QP) problem, which is complex to compute, obtain a 
solution from a set of linear equations. Therefore, LS-SVMs 
have a significantly shorter computing time and they are 
easier to optimize.  

In this paper a forecasting model based on the 
incremental update of a training set with new instances is 
proposed for the hourly load demand of the next day, using 
LS-SVMs. Most machine learning based models, employed 
for the STLF, use a fixed size training set, i.e. forecasts for 
several days or even weeks are being made by a training 
model with the same training set. But in many forecasting 
problems, such as STLF, where new data is constantly 

arriving, a dynamic update of the model is crucial for 
improving and preserving its performance. Accordingly, after 
the hourly forecasting of the load for the next day has been 
completed, the initial training set is updated by adding 
hourly data from the previous day, which is in that moment 
known. Then, for next day prediction, the model is retrained 
with an extended training set. As the experimental results 
show, in this way improvements to the accuracy of 
forecasting results can be achieved. 

The rest of this paper is organized as follows: Section 2 
presents the used methodology. Section 3 presents the 
data set analysis, section 4 describes the proposed 
forecasting model. Section 5 gives the experimental results. 
Finally, Section 6 provides conclusions. 

  
Least squares support vector machines 
 Consider a known training set {xk, yk}, k=1,…,N with 

input vectors n
k Rx and output scalars ky R . The 

following regression model is built by using the non-linear 

mapping function ( ) : hnnR R    which maps the input 

space into a high-dimensional feature space and constructs 
a linear regression in it, expressed in: 
 

(1)  ( ) ( )Ty b x ω x , 
 

where ω represents the weight vector and b is a bias term. 
The optimization problem is formulated in primal space: 
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subject to linear equality constrains expressed by: 
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where ek represents error variables and γ is a regularization 
parameter which must be determined by the user. 
 In order to solve the optimization problem defined with 
(2) and (3), it is necessary to construct a dual problem using 
the Lagrange function. The solution to this problem is 
presented as: 
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Example (4), y=[y1,…,yN]T, 1v=[1,…,1]T and 
α=[α1,…,αN]T represents the column vectors of dimensions 
N x 1, where αk, k=1,…,N are Lagrange multipliers, I is the 
identity matrix and 

( ) ( ) ( , ), , 1,...,T
kl k l k lK k l N   Ω x x x x  denotes the 

kernel matrix, both of them of dimensions N x N. The linear 
system defined in (4) is of the order (N+1) x (N+1). It is 
important to notice that in (4) vector y is formed form the 
training set outputs yk, k=1,…,N.   
 The resulting LS-SVM model for function estimation in 
dual form is represented in (5), where αk and b are solutions 
of linear system defined by (4): 
 

(5)  
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 The dot product ( , ) ( ) ( )T
k kK  x x x x  represents a 

kernel function. Kernel functions enable the computation of 
the dot product in a high-dimensional feature space by 
using data inputs from the original space, without explicitly 
computing φ(x). A commonly used kernel function in non-
linear regression problems, one that is employed in this 
study, is a radial basis function represented as: 
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where σ represents a kernel parameter which should be 
determined by the user. When choosing an RBF kernel 
function with LS-SVM, the optimal parameter combination 
(γ, σ) should be established. It can be noticed that only two 
additional parameters (γ, σ) need to be optimized, instead 
of three (γ, σ, ε) as in SVM but at the cost of a lack of a 
sparse solution, which follows from (5). 
 Parameter selection is the most important part in the 
formation of the LS-SVM model, because it significantly 
affects performance. Accordingly, a grid search algorithm in 
combination with a k-fold cross-validation is employed in 
this paper. 
 
Data analysis 

The available data used for model formation consist of 
weather, calendar and history load demands for the territory 
of the city of Niš and its surroundings for the period from 
January 2008 to March 2010. The data were obtained from 
electric distribution utility “ED Jugoistok”.  

The average daily temperature is the most important 
weather variable that affects the electrical load pattern. Fig. 
1 shows the relation between the load and average daily 
temperature for the period of one winter month. The 
temperature and load have a negative correlation coefficient 
for the winter months which is close to one. This is 
explained by that the load demand increase with a 
temperature decrease and vice versa. Temperature shapes 
the trend of the load demand curve. Temperature also 
influences load variance, but that influence is smaller than 
influence on the trend. 

The hour of the day and day of the week are two major 
calendar variables that have an influence on the load curve 
shape. Load changes during the day from one hour to 
another. Fig. 2 shows hourly load during the day for each 
day of the week in February. 

From Fig. 2 it can be seen that load curve is slightly 
different from one week day to another but its shape is the 
same. It can be noticed that load demand during the 
weekends is less than on the week days, and not only for 
the winter season but also for all seasons. 

 
Fig. 1. Average daily temperature and load for one winter month 
 

 
Fig. 2. Hourly load during the week 
  

Fig. 3 shows that the shape of the load curves for each 
day of the week are very similar, which indicates that the 
usage of history load per hour can supply the model with 
additional information about the expected load. Load peak 
occurs twice a day, one is from about 9:00 AM to 10:00 AM 
and another is from about 7:00 PM to 9:00 PM. When 
history load is used as a model feature, the question is 
which size of regressor to use, i.e. how many past load 
values to take as model features.  

 

 
Fig. 3. Hourly load during the day 
 
Model formation 

Different factors that have an influence on electric load 
were analyzed, and accordingly appropriate features were 
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chosen for the model. The past load time horizon used in 
this paper is m=24, i.e. the model used the last 24 hour 
loads from the prediction moment. Fig. 4 shows the 
structure of the input vectors. Input vectors consist in total 
of m+s features, where m is the past load time-series 
features Pk, k=1,..,24 and s=3 non-time series features: the 
average daily temperature Tk, the hour of the day Hk, 

 1,2,..., 24kH  and the day of the week Dk, 
 1, 2,...,7kD  where 1 corresponds to Monday, 2 to 

Tuesday and so on. It is important to emphasize that Dk and 
Hk are known values in both the training and test set, but 
the temperature Tk is only known in the training set, while in 
the test set the predicted temperature for the next day is 
used instead of the true one which is unavailable at the 
moment of prediction.  

 

 
Fig. 4. Input vector structure 
 

In order to have an optimal training of the model, the 
data set has to be normalized before training. This prevents 
the dominance of any features in the output value and 
provides faster convergence and better accuracy of the 
learning process. Accordingly, all features and their output 
values are normalized within the range [0, 1]. 

For the initial training segment choice the “similarity” 
principle is used, modeled based on the k-nearest-neighbor 
(KNN) algorithm. The idea behind the algorithm is that 
similar inputs also have similar mapping relationships with 
their outputs. The training segment is chosen to have a 
similar calendar category as the forecasting period (Feb 
2010), in order to compose an LS-SVM training set with 
similar weather features. Therefore, the training segment 
consists of hourly features for three winter months (Dec. 
2008, Jan. 2009, Feb. 2009). This also reduces the size of 
the training set and the constructing time of the LS-SVM. 

The model training procedure and the hourly forecasting 
of the load demand for one day in advance is presented in 

Algorithm 1, where    , , , 1,...,k ky k N X Y x denotes 

the initial training set with input vectors m s
k R x and 

outputs ky R .  

 
Algorithm 1. LS-SVM model training and forecasting 
 
for j = 1 … number of days 
xt= Xt(j) 
(γ,σ)=tunesvm(X, Y, grid-search, cross-validation) 
model = trainsvm(X, Y, γ , σ)

 for i = 1 … 24 
P(i) = forecast(model, xt) 
Update xt: 
xt(1) = hi+1 
xt 

= shift_ left_time-series(xt, 1) 

xt(m+s)=P(i)  
endfor 
Results(j)=P 
Update(X, Y) 

endfor 
Output : Results 

 
The first step in the algorithm is the selection of a new 

instance xt from the test set Xt. After that, the optimal (γ, σ) 
pair is determined on (X, Y) using a grid search with k-fold 
cross validations, as mentioned in section 2. The training 
set is randomly subdivided into k disjoint subsets of 
approximately equal size and the local LS-SVM model is 
built k times with the current pair (γ, σ). Each time, one of 
the k subsets is used as the test set and the other k - 1 
subsets are put together to form a training set. After k 
iterations, the average model error is calculated for the 
current pair (γ, σ). The entire process is repeated with an 
update of the parameters (γ, σ) until the given stopping 
criterion (e.g. Mean Squared Error) is reached. The 
parameters (γ, σ) are updated exponentially in the given 
range using predefined equidistant steps, according to the 
grid-search procedure. After obtaining the optimal (γ, σ) 
combination, an LS-SVM forecasting model is formed 
according to (5) and (6). 

The model is then employed for the prediction of load 
demand for one step ahead, i.e. for the next hour, and the 
result is placed in vector P. After that, it is necessary to 
update the xt vector for the next prediction step. The update 
is needed because the true values of the load for the past 
24 hours are available only for the first prediction step. After 
that, for the next predictions, the predicted values from the 
previous steps are used instead of the true ones, which are 
unknown at the moment. Accordingly, the hour feature hi+1 
is updated (day and temperature features remain the same 
for the current day), load time-series are shifted left for one 
place in order to remove load from the earliest hour, and the 
prediction from the previous step is placed in the final 
position of the time-series instead of the true load from the 
last hour. The whole process is repeated 24 times and at 
the end, hourly predictions for the following day will be 
obtained. 

Before the selection of the next xt for the next day, the 
initial training set is updated by adding hourly data from the 
previous day, which is known at that moment, and the 
model is retrained. The update and re-training is performed 
in each iteration of the outer loop (by day) until the given 
number of days in the test is reached. Although it is 
possible to update the initial training set and re-train the 
model in each iteration of the inner loop (by hour), in this 
case it is not necessary, because hourly predictions are 
needed for one day ahead, i.e. the prediction horizon is one 
day. If prediction for one hour ahead was needed, the 
model could be retrained in each iteration of the inner loop 
(by hour). 
  
Experimental results 

For methodology evaluation, the forecasting of hourly 
loads in February 2010 was done for each day. Two models 
are generated, the first with the initial training set 
configuration and the second with an incremental training 
set update scheme. These models are denoted with: 
 M1 - a model trained with an initial training set that 

contains 2136 vectors, 
 M2 - a model which is retrained with daily update of the 

training set. 
To be clear, for the prediction of the first day in the test set 
(i.e. February 1st, 2010) the M2 model is trained with a 
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training set that contains 2136 vectors, same as model M1. 
For the prediction of February 2nd, 24 vectors from the 
previous day (which are known at the moment) are added 
and the model is then retrained with 2160 vectors. And 
finally, for the prediction of February 28th all of the vectors 
for the previous 27 days are added into the initial training 
set, and the model is retrained with 2784 vectors.  
 The prediction quality is evaluated using Mean Absolute 
Percentage Error (MAPE), Maximum Error (ME) and 
Absolute Percent Error (APE) defined with: 
 

(7)   
1

ˆ1
% 100

n
i i

i i

P P
MAPE

n P


   , 

(8)  ˆmax i i
i

ME P P   , 

(9)   
ˆ

% 100i i

i

P P
APE

P


   , 

where Pi  and îP  are the real and the predicted value of the 

load demand in the ith hour and n=24 is the number of 
hours. 
 The MAPEs obtained by committing models with the test 
set are shown in Fig. 5. The MEs obtained by committing 
models with the test set are shown in Fig. 6. 
 

 
Fig. 5. Daily MAPEs for models M1 and M2 
 

 
Fig. 6. Daily MEs for models M1 and M2 
 

 Table 1 shows the models average, maximum and 
minimum daily MAPEs for the entire test set. Similarly,  
Table 2 shows the average, maximum and minimum daily 
MEs. As can be noticed form Figs. 5 and 6 and Tables 1 

and 2, by using the proposed methodology, model M2 
performs better than model M1. All of the values for 
average, max and min MAPEs are significantly reduced, as 
well as the values for average, max and min MEs.  
 
Table 1. Average, max and min daily MAPEs of the entire test set 

Model/MAPE Average Max Min 
M1 3.02 5.72 1.09 
M2 2.32 5.02 0.62 

 
Table 2. Average, max and min daily MEs of the entire test set 

Model/ME Average Max Min 
M1 19697 38536 8592 
M2 15167 31421 4914 

 
 Figs. 7 and 8 show the hourly APEs for models M1 and 
M2 respectively, for all the days in the test period. From 
these Figs., how the APEs behave from hour to hour and 
from day to day can clearly be determined. The black areas 
correspond to the points with a high APE, e.g. with an APE 
of 16%. The opposite white areas correspond to points 
where the APE ranges from 0 to 2%. It is obvious that the 
black areas in Fig. 7 are reduced in Fig. 8 for the APE 
distribution of model M2. 
 

 
Fig. 7. Hourly APE distribution for the M1 model 
 

 
Fig. 8. Hourly APE distribution for the M2 model 
 
 In Fig. 9 real and predicted hourly load demands for 
February 18th with the mid-range MAPE value is given. 
From this figure it can be noticed that the predictions from 
model M2 have an improved shape and trend in 
comparison to model M1. 
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Conclusion 
One method for improving short-term load forecasting is 

presented in this paper. The proposed approach is based 
on the incremental update of the initial training set by 
adding new instances into it as soon as they become 
available and then retraining the model. By this approach 
the evolving nature of the load pattern is followed and the 
model performance is preserved and improved, as the 
experimental results confirm, although the model trained 
only with an initial training set showed quite a good 
performance. 
 

 
Fig. 9. Real and predicted loads of models M1 and M2 for February 
18th  
 
  Different features that affect load demand are 
analyzed, and the appropriate ones were chosen for the 
structure of training vectors. The initial training set was 
carefully chosen to “match” with the predicted season. 
Model evaluation was done hourly for period of one winter 
month, which represents the large test segment, taking into 
account that the predictions are made by hours. The LS-
SVMs were chosen for the non-linear model because of 
their good generalization performance and ability to avoid 
local minima. 

Although the complexity of the calculations in the 
proposed algorithm is increased in regard to training only 
one forecasting model, it brings significant improvements to 
load forecasting accuracy. 
 Further work could consider the development of an 
algorithm for the determination of which vectors should be 
added into the initial training set, and possibly which need 
to be discarded. 
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