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Abstract. Projections onto convex sets (POCS) algorithms have been widely used for image restoration problem. However, the relaxation parameter 

(l ) of POCS is strongly data-dependent and difficult to tune. In this work we focus on optimally selecting such parameter in POCS algorithm for 
image restoration. A stein’s unbiased risk estimate (SURE) based POCS (SPOCS) for image restoration algorithm is proposed, in which SURE is 
used to determine an optimal  value. Finally, the effectiveness of the optimality of the proposed parameter selection is tested by image restoration 
experiments. 
 
Streszczenie. W artykule przedstawiono metodę optymalnego doboru parametru relaksacji dla algorytmu POCS, służącego do odtwarzania 
obrazów. W proponowanym rozwiązaniu (SPOCS) zastosowano estymator Stein’a (SURE), służący do wyznaczenia optymalnej wartości 
współczynnika lambda. Działania algorytmu zostało zbadane eksperymentalnie. (Zastosowanie estymatora SURE w metodzie POCS do 
odtwarzania obrazów). 
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Introduction 

During acquisition or transmission, the obtained images 
often suffer from a blurring effect and noise due to 
defocusing, atmospheric distrubance, relative motion, etc. If 
we assume that the blur is global and translation invariant, 
then the observation process can be modeled as 
( ) ( ) ( ) ( ), , , ,y m n h m n x m n m nh= Ä + , where ( ),h m n is the 

blurring kernel, ( ),m nh is the additive noise, andÄ denotes 

two dimensional convolution. 
These sources of image degradation have a direct 

bearing on the visual quality of image. Undoing these 
imperfections to remove the image degradation is crucial for 
many subsequent image-processing tasks, such as feature 
extraction, object detection, and pattern classification. 
Image restoration aims to restore the true 
image ( ),x m n from its degraded and noisy observation 

( ),y m n . Image restoration is a typical ill-posed inverse 

problem. Regularization terms that incorporate prior 
information about the true image are required for 
reasonable solution. Over the past decade, numerous 
regularization methods have been proposed, such as 
Tikhonov regularization [1], total variation regularization [2], 
wavelet regularization [3], and sparsity regularization [4] etc.  

On the other hand, the POCS methods have been widely 
used for image restoration problem [5-7]. It is known that a 
main problem in image restoration is how to use more priori 
information about the objective to improve quality of the 
restored image. A feasible solution of the restored image is 
an intersection of sets, if all priori information can be 
considered and defined as closed and convex sets in signal 
space. Typical priori information convex sets include sets of 
images restricted by spatial extend, the known part of the 
spectrum, band limitedness, the known part of the image, 
nonnegativity, limited amplitude bound,  energy, ect. 

Row-Action Projection (RAP) [8] as a variant of POCS 
was proposed to achieve iteration parallelization, which has 
been successfully used to image restoration. However, the 
relaxation parameters of RAP are selected empirically, 
which leads to an exhaustive search for that one that gives 
the best restoration result. In [7], Papa proposed to use 
particle swarm optimization algorithm to find optimal/quasi-
optimal relaxation parameter by maximizing or minimizing 

reference image quality measures. However, this method 
does not apply because the true image may not be 
available.  

In this paper, we focus on the data-driven optimal 
relaxation parameter selection in POCS for image 
restoration using Stein Unbiased Risk Estimator (SURE). 
The proposed method can estimate an optimal relaxation 
parameter value l . Experimental results demonstrate the 
effectiveness of the proposed method. 

 
POCS-based image restoration 

The POCS-based method is an iterative algorithm for find 
an image x̂ in the intersection of L  closed convex sets: 
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where the set iC ÎÂ denotes the ith constraints or a priori 

information on x̂ and L is the number of those sets. When 

all the sets ( )1,...,iC i L= are closed and convex, and their 

intersection 0C is non-empty, the vector which belongs to 

0C can be found by successive projection onto the sets via 

corresponding projecting operator 
iCP . 
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where CiP is a projection operator that projects an kth ( )ˆ kx on 

the closed and convex set iC ÎÂ .  

RAP can achieve the image consistent with the 
measurement and minimize the sum-of-squares of the 
image intensities. In this paper, we choose RAP as 
projection technique. In that way, the projecting operator 

kCP is defined as 
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where ( ) ( ) ( ), , ,i j i j h i m j nx e= ⋅ - - , l is the relaxation 

parameter, ( ),h i jS denotes the support of the blurring kernel 

centered at pixel ( ),y i j , and 
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From Eq. (3), it can be seen that the relaxation 
parameter l can be used to accelerate the rate of 
convergence of the algorithm. Although relaxation 
pararmeter of high value can turn the restoration task faster, 
the control of artifacts in the image becomes more difficult. 
On the other hands, low values result in poorly restored 
images. POCS technique requires appropriate selection of 
the relaxation parameter that controls the quality of the 
restored result. 

 
SURE-based POCS (SPOCS) algorithm 

The optimal l should be data-driven and minimize the 
mean squared error (MSE) or corresponding risk. 
Fortunately, Stein has stated that the MSE can be 
estimated unbiasedly from the observed data [9]. In this 
letter, a SPOCS algorithm is presented to find the optimal 
l  that result in optimal restored images. Comparisons with 
other methods show that the proposed SPOCS achieves 
better performance.   

The MSE ( ) 21

2
ˆ ˆMSE x N x x-= - is commonly used to 

determine quality of restored image. However, 
( )ˆMSE x cannot be directly used in practice due to its 

dependence on the true image x . SURE provides a means 
for unbiased estimation of the true MSE. It is specified by 
the following analytical expression [10]: 

(6)                  { }21 2 2 1ˆ ˆSURE= 2 div yN y x N xs s- -- - +                   

where { }ˆdiv y x is the divergence of the POCS algorithm, 

2s is noise variance. The divergence term in (6) plays a 
crucial role in the experssion of SURE. For POCS algorithm, 

according to Eq. (3), the { }ˆdiv y x is given by 
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Now that we hold a complete expression of SURE for 
unbiased MSE estimation, the optimal l  can be chosen by 
minimizing it. Accordingly, 
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Before calculating the optl  with Eq. (9), the noise variance 
2s  must be estimated. a good estimator for 2s  is the 

median of absolute deviation using the highest level wavelet 
coefficients [11]. 

(10)           
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where ( )median ⋅ denotes the median operation, 1HH is the 

highest frequency subband of wavelet coefficients.  

Experimental results 
In this section, we state the experiments performed in 

order to validate the proposed SPOCS for image restoration. 
The proposed method was tested on several natural images 
and compared with the Wiener Filter, Richardson-Lucy (R-L) 
image restoration algorithm and POCS method with a fixed 
parameter l . For POCS based methods and R-L image 
restoration algorithm execution we used five iterations. We 
experimented on the standard 512×512 Lena, Boat, 
Peppers, and Barbara images with blur kernel with size 
15×15 (PSF1), 9×9 Gaussian blur with standard deviation 2 
(PSF2). In the experiments, four measures (ISNR, UIQI, 
MAE, MSE) are used to evaluate the performance of the 

methods. Given f , g and f̂ be the original, degraded and 
restored images, respectively. The ISNR index is defined as  
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The UIQI measure index can be given by  
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where ( )mean ⋅ denotes the average function, 2
fs and 2

f̂
s  are 

the variance of the original and restored images, 
respectively, and ˆff

s  is the correlation coefficient between 

the original and restored images. The MAE and MSE 
measures are defined as  
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where M and N are, respectively, the size of image rows 
and columns. 

Tables 1-4 display the numerical results in terms of 
ISNR UIQI,MSE and MAE. From Tables 1-4, it can be seen 
that the proposed method consistently gives the best value 
of ISNR UIQI,MSE and MAE compared to the other 
methods.  
 
Table 1. Restoration results for Lena image degraded with PSF1 
and PSF2 

Exper. Methods ISNR UIQI MSE MAE 

PSF1 

Wiener -1.0831 0.9363 210.98 10.863 
R-L 0.1045 0.9488 160.50 8.127 

POCS 0.0334 0.9447 163.15 8.702 
SPOCS 0.0212 0.975 150.45 7.653 

PSF2 

Wiener -1.6831 0.9161 250.93 16.953 
R-L 0.214 0.9318 176.51 9.227 

POCS 0.0935 0.9427 168.55 8.912 
SPOCS 0.0422 0.9656 157.33 7.923 

 
Table 2. Restoration results for Boats image degraded with PSF1 
and PSF2 

Exper. Methods ISNR UIQI MSE MAE 

PSF1 

Wiener -1.205 0.9459 184.230 10.176 
R-L 0.1963 0.9580 133.421 7.319 

POCS 0.0856 0.9529 139.561 7.988 
SPOCS 0.0650 0.9729 124.650 6.871 

PSF2 

Wiener -1.505 0.9351 189.331 12.173 
R-L 0.2953 0.9461 153.461 9.221 

POCS 0.0976 0.95019 142.571 8.998 
SPOCS 0.0710 0.9659 134.641 7.687 
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Table 3. Restoration results for Peppers image degraded with 
PSF1 and PSF2 

Exper. Methods ISNR UIQI MSE MAE 

PSF1 

Wiener -0.6445 0.9338 218.148 11.083 
R-L -0.1908 9.382 196.504 9.804 

POCS 0.0131 0.9369 187.949 9.878 
SPOCS 0.0101 0.9639 170.212 9.654 

PSF2 

Wiener -0.7844 0.9213 258.214 16.108 
R-L -0.4191 9.2181 212.514 12.180 

POCS 0.0513 0.9226 199.994 10.987 
SPOCS 0.0310 0.9433 182.231 9.765 

 
Table 4. Restoration results for Barbara image degraded with PSF1 
and PSF2 

Exper. Methods ISNR UIQI MSE MAE 

PSF1 

Wiener -0.7465 0.9446 196.180 10.525 
R-L -0.2997 0.9450 177.003 9.368 

POCS -0.0028 0.9446 165.303 9.221 
SPOCS -0.0013 0.9578 158.561 8.732 

PSF2 

Wiener -0.9746 0.9244 219.118 13.125 
R-L -0.6219 0.9314 187.120 12.113 

POCS -0.0112 0.9456 176.312 10.232 
SPOCS -0.0093 0.9523 168.125 9.413 

 
For visual evaluation, two examples using the standard 

“Lena” and “Barbara” images with PSF1 are given. Figure 1 
and figure 2 show restored results on a cropped subregion 
of Barbara and Lena. Fig.1(a) and Fig.2(a) show an original 
Lena and Barbara images, respectively. (b) is a blurry 
image with PSF1. (c) and (d) are restored images obtained 
by conventional Wiener Filter and R-L method, respectively.  
(e) and (f) are restored images by POCS and SPOCS. 
From the figures we can find that the proposed method 
yields the best restored results and can recover the fine-
scale details more efficiently. 

 

     
(a) Original                         (b) degraded with PSF1 

     
(c) Wiener result                            (d) R-L result 

     
(e) POCS result                          (f) SPOCS result 

Fig.1. Experimental results on Lena with PSF1 

 

   
(a) Original                      (b) degraded with PSF1 

   
(c) Wiener result                            (d) R-L result 

   
(e) POCS result                         (f) SPOCS result 

Fig.2. Experimental results on Barbara with PSF1 
 

In order to visually see the improvements generated by 
the proposed method, we have included in figure 3 a cross-
section of the 128th line (from column 1 to 512) of the 
original Lena image along with the POCS restored estimate, 
and the recovered image by SPOCS.  

 

 
(a) cross-section of the original Lena along with POCS 

 
(b) cross-section of the original Lena along with SPOCS 

Fig.3. Comparison of the corss-section 
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Conclusions 
In this paper, we improve the POCS using the Stein’s 

Unbiased Risk Estimate (SURE). Compared with POCS, 
the proposed method can determine an optimal relaxation 
parameter, which controls the projection. Our experimental 
results indicate that it produces both higher objective 
evaluation criterions (such as ISNR, UIQI, MAE, and MSE) 
and better visual quality than Wiener, R-L, and POCS 
methods.  
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