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Abstract. This paper addresses a novel technique to solve non-convex economic load dispatch (NCELD) problem. Generator constraints,such as 
valve point loading, ramp rate limits and prohibited operating zones are taken into account in the problem formulation of NCELD.Few Variants of 
Differential Evolution (DE) and Differential Evolution with Random Scale Factor (DE-RSF)is applied for solving the above problem. The technique is 
tested with IEEE standard test systems.It is shown that, the presented technique for solving NCELD problem generates quality solutions reliably.  
Keywords: Differential Evolution, economic dispatch, prohibited operating zones, ramp-rate limits, valve-point effect. 
 
Streszczenie. W artykule opisano nową technikę optymalizacji rozmieszczenia jednostek wytwarzania energii elektrycznej na podstawie analizy 
ekonomicznej i analizy obciążenia. Zastosowano różne warianty algorytmu ewolucji różnicowej oraz ewolucji różnicowej o zmiennym współczynniku 
skali. Przeprowadzono badania weryfikujące skuteczność działania proponowanej techniki. (Zastosowanie ewolucji różnicowej o zmiennym 
współczynniku skali w rozwiązywaniu problemu zapotrzebowania elektrycznego z uwzględnieniem stref zabronionych). 
 
Keywords: Differential Evolution, economic dispatch, prohibited operating zones, ramp-rate limits, valve-point effect. 
Słowa kluczowe: ewolucja różnicowa, zapotrzebowanie energetyczne, strefa zabroniona, ograniczenie rampy. 
 

 
Introduction 

Economic operation of electric energy generating 
systems has been given proper attention in the electric 
power system industry. The objective of economic load 
dispatch problem (ELD) of electric power generation, whose 
characteristics are complex and highly nonlinear, is to 
schedule the committed generating unit outputs so as to 
meet the required load demand at minimum operating cost 
while satisfying all unit and system equality and inequality 
constraints [1]. 

In traditional ELD the cost function of each generator is 
approximately represented by a simple quadratic function 
and is solved using conventional mathematical  
programming [2] based on several optimization techniques, 
such as dynamic programming [3], linear programming[4], 
homogenous linear programming[5], and nonlinear 
programming technique[6,7]. However, real input–output 
characteristics display higherorder non-linearities and 
discontinuities. Power plants usually have multiple valves 
that are used to control the power output of the unit. When 
steam admission valves in thermal units are first opened, a 
sudden increase in losses is observed. This leads to ripples 
in the cost function, which is known as the valve-point 
loading. The ELD problem with valve-point effects is 
represented as a non-smooth optimization problem [8]. 

The traditional algorithms can solve the ELD problem if 
the incremental fuel-cost curves of the generating units are 
monotonically increasing piece-wise linear functions. But, a 
practical ELD must include ramp rate limits, prohibited 
operating zones, valve-point effects and multi-fuel options. 
The resultant ELD is a challenging non-convex optimization 
problem, which is hard to solve by the traditional methods. 
Modern heuristic optimization techniques such as Simulated 
Annealing [9], Evolutionary Algorithms (EAs)[10], Particle 
Swarm Optimization[11], Neural Networks, and Tabu 
Search have been given much attention by many 
researchers due to their ability to find an almost global 
optimal solution. These methods have drawbacks such as 
premature convergence and after some generations the 
population diversity would be greatly reduced. 

Differential evolution [12] is a stochastic optimization 
method. The fittest of an offspring competes one by one 
with that of the corresponding parent, which is different from 
the other evolutionary algorithms. This competition implies 
that the parent is replaced by its offspring if the fitness of 
the offspring is better that that of its parent. On the other 

hand, the parent is retained in the next generation if the 
fitness of the offspring is worse than that of its parent. This 
one by one competition gives rise to a faster convergence 
rate. However this faster convergence leads to a higher 
probability of obtaining a local optimum because the 
diversity of the population seconds faster during the solution 
process. To overcome this drawback, the mutation operator 
is made dynamic throughout the run process to maintain the 
diversity of the population, which guarantee a high 
probability of obtaining the global optimum. 

This paper considers different types of non-convex ELD 
problem, namely prohibited operating zones, ramp rate 
limits and valve-point loading effects. The performance of 
the presented method in terms of solution quality and 
computational efficiency has been compared with other 
variants for four IEEE standard test systems including 
equality, inequality, thermal and dynamic constraints. 
 
Problem formulation 
 The aim of ELD problem is to make the generators fuel 
consumption or the operating cost of the whole system 
minimal by determining the power output. Each generating 
unit under the constraint condition of the system load 
demand, power losses as well as some generating power 
constraints for all units should be satisfied. The objective of 
the economic dispatch is to minimize the total generation 
cost of a power system over some appropriate period while 
satisfying various constraints.The mathematical model of 
real power economic dispatch with  primary constraints can 
be written as follows, 
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where FT- is the total fuel cost of all generating units, i- is 

the index of dispatchable units; Fi(Pi) -is the cost function of 
the unit i, Pi -is the power output of the unit i, ,NG -is the set 
of all dispatchable units and ai,bi,ci -are the fuel cost 
coefficients of the unit i.The general ELD problem consists 
in minimizing FT subject to following constraints: 
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Power Balance Constraint: 
 (4)                    


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Thermal constraints: 
The transmission Loss PL may be expressed using B-

coefficients as, 
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where  PD -is the total load demand; PL -is  the power losses 
and  Bij -is the power loss coefficient. 
 

Generator Capacity Constraints: 
 The power generated by each unit lies within their lower 

limit min
iP  and upper limit max

iP . So that 

(6)                            max
ii

min
i PPP   

When a steam admission valve starts to open in thermal 
units, a sudden increase in losses occurs, which produce a 
rippling effect on the unit's cost function. The generator cost 
function is obtained from a data point taken “ heat run” 
tests, when input and output data are measured as the 
slowly varies through its operating region. To consider the 
valve-point effects in the cost model, the rectified sinusoidal 
function should be incorporated into the quadratic function 
and the objective function min FT-is represented by a more 
complex formula along with (3), (4) and (5) as, 
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where ei and fi are the fuel cost coefficients of generator ‘ i ’ 
reflecting valve point effects. 

 

Dynamic Constraints: 
The operating range of units is restricted by their ramp 

rate limits during each dispatch period. The power 
generated by each of the unit in certain interval may not 
exceed that of previous interval Pi0 by more than a certain 
amount URi, the upper ramp limit and neither less than a 
certain amount DRi, the lower ramp rate limit of the 
generator. Consequently the power output of a practical 
generator cannot be varied instantaneously beyond the 
range along with (4), (5), (6) and (7) as it is shown in the 
following expression: 
As generation increases,  
(8)                             iioi URPP    

As generation decreases, 
(9)                          iiio DRPP    

and  
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The prohibited operating zones(POZ) are considered due 
to the vibrations in the shaft bearing caused by the steam 
valve or due to the associated auxiliary equipment such as 
boiler or feed pumps.  The range of output power of a 
generator was defined previously to inhibit as POZ. 
Mathematically, the feasible operating zones of unit can be 
described in addition to the constraints as in equations(4), 
(5), (6), (7) and (10) as follows: 
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where l
j,iP  is the lower bound of the prohibited zone ‘j’ of 

unit ‘i’, u
j,iP is the upper bound of the prohibited zone ‘j’ of 

unit ‘i’, ni be the number of prohibited zones in unit ‘i’.  

Differential Evolution 
 Differential Evolution (DE) algorithm is a population 
based algorithm like genetic algorithm using the similar 
operators; crossover, mutation and selection. The main 
difference in constructing better solutions is that genetic 
algorithms rely on crossover while DE relies on mutation 
operators. This main operation is based on the differences 
of randomly sampled pairs of solutions in the population. 
            The algorithm uses mutation operation as a search 
mechanism and selection operation to direct the search 
towards the prospective regions in the search space. The 
DE algorithm also uses a non uniform crossover that can 
take child vector parameters from one parent more often 
than it does from other [13]. By using the components of the 
existing population members to construct trial vectors, the 
recombination (crossover) operator efficiently shuffles 
information about successful combinations, enabling the 
search for a better solution space. 

Initialization 
     Initialization generates initial population P0 which 
contains Np individuals x0, i, 1 ≤ i ≤ Np. 
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Where, [bj
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L] is the search space of the jth optimization 
parameter; αi

j is a real random number but not necessarily 
uniform in the range [0, 1] 

Mutation 
The mutation operator creates mutant vectors by 

perturbing a randomly selected vector xa with the difference 
of two other randomly selected vectors xb and xc , 
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where xa, xb and xc are randomly chosen vectors among the 
‘NP’ population, and a ≠ b ≠ c. xa, xb and xc are selected a 
new for each parent vector. The scaling constant “F” is a 
real random number but not necessarily uniform in the 
range [0, 1]. It is an algorithm control parameter used to 
adjust the perturbation size in the mutation operator and 
improve algorithm convergence. 

Crossover 
The crossover operation generates trial vectors xi

 by 
mixing the parameters of the mutant vectors xi with the 
target vectors xi according to a selected probability 
distribution, 
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where i=1, …, NP and j=1,…, D; q is a randomly chosen 
index Є 1,…,Np that guarantees that the trial vector gets at 
least one parameter from the mutant vector; ρj is a uniformly 
distributed random number within [0 , 1] generated a new 
for each value of j. The crossover constant CR is an 
algorithm parameter that controls the diversity of the 
population and aids the algorithm to escape from local 
minima. xj,i

‘(G) and xj,i
”(G) are the jth parameter of the ith target 

vector, mutant vector, and trial vector at generation G, 
respectively.  

Selection 
The selection operator forms the population by choosing 

between the trial vectors and their predecessors (target 
vectors) those individuals that present a better fitness or are 
more optimal. 
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where i=1.., NP. 
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This optimization process is repeated for several 
generations, allowing individuals to improve their fitness as 
they explore the solution space in search of optimal values. 
DE has three essential control parameters,the scaling factor 
(F), the crossover constant (CR) and the population size 
(NP). The scaling factor is a value in the range [0, 1] that 
controls the amount of perturbation in the mutation process. 
The crossover constant is a value in the range [0, 1] that 
controls the diversity of the population. The population size 
determines the number of individuals in the population and 
provides the algorithm enough diversity to search the 
solution space. 
 
Differential Evolution with random scale factor(DE-RSF) 

In the original DE the difference vector is scaled by a 
constant scaling factor ”F”.The usual choice for this control 
parameter is a number between 0.4 and 1.But a dynamic 
behavior to the scaling factor by varying the scaling 
factor[15]in a random manner in the range(0.5,1) is applied 
by using the relation 

 
(16) F=0.5*(1+rand(0,1)) 

 
Where rand(0,1) is a uniformly distributed random number 
within the range (0,1).The mean of the scaling factor is 
0.75.This allows for stochastic variations in the amplification 
of the difference vector and thus help retain population 
diversity as the search progress,even when the tips of most 
of the population vectors point to locations clustered near 
the local optimum due to the randomly scaled difference 
vector,a new trial vector has fair chances of pointing at an 
even better location on the multimodal functional 
surface.Therefore,the fitness of the best vector in a 
population is much likely to get stagnant until a truly global 
optimum is reached.  

Implementation of DE-RSF for NCELD Problem 
Step 1) Parameter Setup 

Initialize the number of generating units N and 
Population size NP. Specify minimum and maximum 
capacity of each generator Pimin and Pimax respectively. 
Initialize DE parameters like crossover probability CR, 
scaling factors such as α and β. Set generation count, G = 
0. 
Step 2) Initialization of the Population 

For a population size NP and dimension D, an initial 
vector Xij,G is randomly generated. D represents the number 
of decision variables to be optimized. In ELD problem D is 
the number of generating units considered. Xij,G is the real 
power value of jth unit of the ith population randomly 
generated within the operating limits using (12). 
Step 3) Evaluation of Fitness Function 

Evaluate the fitness value of each individual vector Xij,G. 
The evaluation function F(Pi) is defined to minimize the fuel 
cost function given by (1) for a given load demand PD, while 
satisfying the constraints given in equations (3), (7), (10) 
and (11). 
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where λ is the penalty parameter for not satisfying the 
load demand and γ represents the penalty for a unit loading 

falling within a prohibited operating zone. R
iv  is the violation 

of the prohibited zone constraint for the ith unit which is 
defined as  
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Step 4) Mutation Operation 
     Step 4.1) Perform the mutation operation with random 
scale factor using (16) 
     Step 4.2) Perform cross over operation using 
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Step 5) Recombination 
Recombination is employed to generate a trial vector Ui 

by replacing certain parameters of Xi with corresponding 
parameters of donor vector Vi. The trial vector by crossover 
operation is obtained using (19) and its fitness is evaluated 
using (1). 
Step 6) Selection 

Members to constitute the population of next generation 
(G+1) are decided by (19). The new vector Xi,(G+1) is 
selection based on the comparison of fitness value of both 
Xi and Ui.  
Step 7) Verification of Stopping Criterion 

Set the generation count G=G+1. Go to step 3 until 
stopping criterion is reached. The stopping criterion 
considered is usually maximum generation count Gmax . 
 

Simulation Results and Discussion 
 In order to verify the effectiveness of the  presented DE-
RSF method, four test systems are considered. Table 1 
shows the case studies with different type of practical 
constraints considered in solving a non-smooth economic 
load dispatch.The fuel cost coefficients and the operating 
limits for all the case studies are taken from [11] and [14]. 

In addition to the constraints given in Table 1, each test 
system is also subjected to the power balance constraint 
which is given in equation (4).  
 

Table 1 Description of the Case Studies 
Case 
study 

Test 
system 

Constraints 

1 3-unit 
valve point effects, ramp rate limits and 

prohibited operating zones 

2 13-unit 
valve point effects ,ramp rate limits and 

prohibited operating zones  

3 15-unit 
valve point effects ,ramp rate limits and 

prohibited operating zones  

4 40-unit 
valve point effects, ramp rate limits and 

prohibited operating zones 
 

The results obtained for each case study using the DE-
RSF method is compared with other types of DE variants. 
Each DE variant considered in this paper differs from the 
other based on the mutation factor. A brief outline of the 
different DE variants used in the comparison study is shown 
in Table 2. 

  
Table 2 Different Types of DE Variants 
Strategy Description 
DEV (1) DE/current_to_ best/1/bin 
DEV (2) DE/current_to_best/2/bin 
DEV (3) DE/current_to_rand/1/bin 
DEV (4) DE/rand/1/bin 
DEV (5) DE/best/1/bin 

 
More detailed information on the types of DE strategy 

can be seen in [15].  The consistency in getting optimal 
solution and comparison of solution quality of the DE-RSF 
method with other techniques is carried out by taking 50 
independent runs. The software is coded using MATLAB 
and executed on a personal computer. 
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Control Parameters in DE-RSF 
The DE-RSF method consists of six control variables. 

They are NP-population size, NG- is the set of all 
dispatchable units,α and β-scaling factors, Cr-crossover 
rate, and w-weight factor. The following control parameters 
have been chosen for all the DE variants for 50 trials was 
applied in this paper except the presented DE-RSF.Other 
parametere were, NP = 100, NG = 1000, Cr = 0.8. In this 
paper, the value of weight factor is started with 0 for all 
vectors and then increased up to 1 during the execution of 
algorithm. The scaling factor for DE-RSF was varied in 
between the random value(0,1) throughout  the progress of 
its run and is dynamic in nature. 
 Table 3 shows the results for DE variants and DE-RSF 
for the case study 1.Table 4 shows the convergence result 
for 10 thermal unit system considering constraints. The 
system data are considered from[14]. 

 Third case study has been taken from [11]. In this case, 
the load demand expected to be determined was 
PD=2630MW. The data for 15 unit system is available in 
[14]. Fig.1. clearly shows that the presented method 
outperforms than other DE variants.Fig.2. Shows the 
presented method produces minimum fuel cost.Fourth case 
study consist of 40 thermal units of generation with the 
effects of valve-point loading, Ramp rate limits, Prohibited 
operating zones, equality and inequality constraints as 
referred. In this case, the load demand expected to be 
determined was PD=10500MW. The individual power 
generation ot units for DE variants and DE-RSF are shown 
in Fig.3.Minimum fuel cost obtained by presented method 
and various DE variants were also shown in Fig .4.It is clear 
from Fig 4 that the presented technique implies better 
results.  

 
Table 3 Convergence Results for 3 Generator System Load demand=850MW; Maximum iteration=1000 and NP=100 

Unit 
DE Variants 

DE-RSF 
DEV (1) DEV (2) DEV (3) DEV (4) DEV (5) 

Unit 1(MW) 174.960 182.140 181.430 181.534 185.537 200.000 
Unit 2(MW) 400.000 400.000 400.000 400.000 400.000 322.860 
Unit 3(MW) 489.460 487.812 488.326 489.445 490.032 520.000 
Ploss(MW) 214.420 213.984 213.570 214.487 213.984 192.860 

FuelCost($/hr) 10124.620 10120.562 10119.456 10119.322 10114.560 9820.340 
Total power output(MW) 1064.420 1064.420 1064.420 1064.420 1064.420 1042.860 

 
Table 4 Convergence Results for 13 Generator System Load demand=1800MW; Maximum iteration=1000 and NP=100 

Unit 
DE Variants 

DE-RSF  
DEV (1) DEV (2) DEV (3) DEV (4) DEV (5) 

Unit 1(MW) 506.908 506.912 398.813 228.282 211.845 223.220 
Unit 2(MW) 253.455 253.458 330.868 42.392 31.535 335.600 
Unit 3(MW) 253.467 253.455 328.849 332.039 176.959 186.370 
Unit 4(MW) 99.363 99.363 81.872 180.000 180.000 180.000 
Unit 5(MW) 99.364 99.363 81.840 180.000 180.000 180.000 
Unit 6(MW) 99.362 99.363 81.836 180.000 180.000 180.000 
Unit 7(MW) 99.364 99.363 81.870 180.000 180.000 85.660 
Unit 8(MW) 99.363 99.363 81.868 180.000 180.000 85.430 
Unit 9(MW) 99.364 99.363 81.849 79.55. 180.000 84.990 

Unit 10(MW) 40.000 40.000 55.106 67.734 51.337 57.590 
Unit 11(MW) 40.000 40.000 55.179 40.000 120.000 56.940 
Unit 12(MW) 55.000 55.000 70.051 55.000 55.000 72.540 
Unit 13(MW) 55.000 55.000 69.998 55.000 73.322 71.620 

Fuel cost($/hr) 17932.470 17931.948 16183.740 16531.740 16496.340 16136.660 
Total power output(MW) 1800.000 1800.000 1800.000 1800.000 1800.000 1800.000 
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Fig.1.Individual unit power generation for case study 3 
 

Fig.2.Fuel Cost Distribution for Different DE Variants

Conclusion 
 This paper presents new approach combining to solve 
the ELD problem of electric energy with the valve-point 
effect. The DE-RSF algorithm has the ability to find the 
better quality solution and has better convergence 
characteristics, computational efficiency, and robustness. 

Many realistic and nonlinear characteristics constraints of 
the generator such as ramp rate limits, prohibited operating 
zones and generation limits are considered for practical 
uses in the presented method. It is clear from the results 
obtained by different trials that the presented method has 
good convergence property and can avoid the shortcoming 
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of premature convergence of other optimization techniques 
to obtain better quality solution. Four case studies have 
been used and the simulation results indicate that this 
optimization method is very accurate and converges very 
rapidly so that it can be used in the practical optimization 

problems. Due to these properties, the DE-RSF method 
future can be tried for solution of complex unit commitment, 
dynamic ELD problems in the search of better quality 
results.

  
Fig.3. Individual unit power generation for case study 4 

 

Fig.4. Fuel Cost Distribution for Different DE Variants 
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