Tomasz SZYDLO', Szymon GUT', Barttomiej PUTO'
AGH University of Science and Technology (1)

Smart Applications: Discovering and interacting with
constrained resources IPv6 enabled devices

Abstract. In the future, home appliances and ubiquitous devices will be equipped with IP communication interfaces and will expose their functionality
as services. Such real world devices will be equipped with tiny microprocessors of constrained resources and use lightweight software protocols.
They will be used by the smart applications installed by the user on his personal devices such as phones, tablets or TV sets. The paper presents the
lightweight protocol stack for enabling service orientation and service discoverability for the constrained resources real world devices and the concept
of smart application platform for personal devices. The paper presents also the prototype realization of example devices and applications that use
these devices.

Streszczenie. W przysztosci, urzadzenia domowe beda wyposazone w interfejsy umoZzliwiajgce im komunikacje z wykorzystaniem protokotu IP, a ich
funkcjonalnos¢ bedzie eksponowana w postaci serwisow. Urzadzenia beda wyposazone w mikrokontrolery o ograniczonych zasobach obliczeniowych
oraz bedg wykorzystywac lekkie protokoty komunikacyjne. Takie urzadzenia bedg mogty by¢ wykorzystywane przez inteligentne aplikacje instalowane
przez uzytkownikow na ich urzadzeniach mobilnych. Artykut przedstawia lekkie protokoty udostepniania oraz wykrywania serwisow dla bezprze-
wodowych urzadzen o bardzo ograniczonych zasobach obliczeniowych, a nastepnie przedstawia koncepcje platformy programistycznej dla urzadzen
mobilnych wspierajaca tworzenie inteligentnych aplikacji. Artykut przedstawia rowniez przyktadowe urzadzenia oraz aplikacje z nich korzystajace.

Inteligentne aplikacje: Wykrywanie i interakcja z urzadzeniami o ograniczonych zasobach wykorzystujacymi protokot IPv6)

Keywords: 6LoWPAN, IPv6, smart devices, embedded systems

Stowa kluczowe: 6LoWPAN, IPv6, urzadzenia przenosne, systemy wbudowane

Introduction

Over twenty years ago, Mark Weiser presented in his
article[13] vision of the users surrounded by smart electronic
devices equipped with radio communication interfaces and
serving to support a man in his everyday life. Since then,
advances in miniaturization of electronic systems have con-
tributed to realizing the Weiser vision. The well known mi-
croprocessor vendor, ARM Ltd., envisages that in the near
future, market of processors for embedded solutions will be
ten times greater than the market of processors for mobile
phones, tablets and computers. It is expected that majority
of real world devices will be embedded with the smallest and
low cost microprocessors that run at a few MHz with inte-
grated radio transceivers. These devices will be able to of-
fer their functionality as services via particular APIs, enabling
other devices and smart applications to interact with them
dynamically using IP protocol stack.

The applications for personal devices, such as TV sets,
tablets, mobile phones and others should follow the trend in
the consumer electronic market and enable interaction with
the ubiquitous real world devices equipped with constrained
resources processors. Simple applications for controlling
household devices with the usage of mobile phones is noth-
ing new and there were plenty of such solutions, but the pos-
sibility to interfere cloud services, user data, its preferences
and his real world devices opens unlimited opportunities for
application designers. Combining this with the open stan-
dards for communication and well established application dis-
tribution markets, where users might search, download and
install them on their personal devices is even more attractive.
These smart applications should handle the dynamism of the
environment, appearance and disappearance of the service
enabled real world devices and their movement in the envi-
ronment. Smart applications and a real world devices should
compose an ecosystem, where interacting with real world de-
vices should not differ from interacting with other application’s
building blocks that are specific for the particular operating
system deployed on a personal device. Invoking an action
on the real world device should be similar to, e.g., opening
a webpage in the browser installed by the user on the mo-
bile device or playing the particular audio file in the installed
multimedia player application.

Enabling IP protocol stack and service orientation for

221

real world devices equipped with constrained resources mi-
crocontrollers requires to handle the computational limita-
tions on all of the seven layers of OSI ISO[16] protocols
model. Interacting with service oriented real world devices
requires to fulfill several requirements such as service discov-
erability, interpretability and observability. Services should be
supplemented with communicative meta-data by which they
can be effectively discovered and interpreted. Observability
means that services should provide mechanisms for push-
ing changes of their state without the necessity of constantly
pulling and thus consuming limited resources. From the user
perspective, smart applications that use real world devices
should not be tidily coupled to the devices installed in the
homes but should provide mechanisms for self configuration.
Such requirements should be fulfilled by the protocol stack
chosen for enabling service orientation for real world devices.

Most of the pervasive electronic devices use wireless
communication in the physical layer of protocol stack. Ma-
jority of existing technologies use 2.4GHz ISM band due to
its unlicensed access. There are strong constraints on data
link layer for service enabled real world devices because of
power efficiency requirement of these devices. Broadly used
wireless standards such as IEEE 802.11 b/g/n do not meet
these requirements, so IEEE 802.15.4[2] standard has been
designed that is supported by semiconductor vendors. They
decided to put focus on the development of the compliant
transceivers and integrating them in one device with the tiny
processors. In the network layer, decision should be made
what addressing scheme should be used. IPv4 does not have
sufficient addressing space, while IPv6 can be used for ad-
dressing as its size is deemed enough for the foreseeable
future. The header of IPv6 frame would fill the major part of
energy efficient data link protocol as IEEE 802.15.4, so the
enhanced frame format should be used as in 6LoWPAN[8]
specification. On the transport layer, usage of TCP protocol
might introduce the unnecessary overhead for the communi-
cations. On the other hand, usage of UDP protocol might re-
sult in the lack of guaranties necessary for proper working of
service orientation protocols such as WS* and others based
on reliable communication. Because of these limitations,
the especially designed protocols such as the CoAP[11] or
DPWSJ[1][3] might be used because it implements packet ac-
knowledgments and retransmission in application layer, so it

PRZEGLAD ELEKTROTECHNICZNY , ISSN 0033-2097, R. 89 NR 6/2013

might be used over UDP.

In this paper we propose protocol stack that enables IP
connectivity and service orientation using open standards for
real world devices that are equipped with low cost microcon-
trollers and radio transceivers. Then, we propose the con-
cept of software platform for mobile devices that simplifies
writing smart applications interacting with real world devices.
The paper shows also the working prototype of such a sys-
tem, which proves the concepts and ideas. It also shows
that these technologies are mature enough to be used in the
production. The prototype system encompasses real world
devices equipped with 8-bit microprocessors running under
Contiki OS, integrated router for IPv6/6LoWPAN bridging and
a smart application for Android OS.

Motivating Scenario

Bob buys a decorative desk lamp, that can change its
color of light according to the set RGB values. The lamp is
equipped with a wireless interface and exposes its function-
ality as a service. Lamp manufacturers have decided to unify
the control interface of their devices. It is in their interest, be-
cause it enables possibility to use their devices in different
applications provided by third parties.

Bob searches the applications available on the Internet
and installs the application on his smart TV that based on
the weather forecast for the next day, changes the light color
of the chosen lamp. The application, after downloading and
installing switches to configuration mode.

1. Bob selects the city, for which he wants to get the
weather forecast.

2. Application finds the available lamps in the house and
shows a list of devices along with meta-data containing
information such as the manufacturer, model and serial
number.

3. Bob chooses the particular lamp that he would like to
be used by the smart application. The application then
encourages Bob to install the appropriate driver for the
lamp.

Weather forecast indicated by the application does not
envisage the weather conditions properly - Bob figured out
that the results are biased. Bob searched for different
weather forcast applications and found one that can use the
weather station installed in home to improve the weather fore-
cast by analysis the history of differences.

Bob then buys a universal weather station and installs
it in the house, and then configures the new application to
use the already bought device. The new application observes
the actual weather conditions gathered by the weather station
and adjusts the weather forecast taken from the Internet and
then changes the color of the selected RGB lamp.

Related Work

There were several works aimed at introducing service
orientation and IP connectivity to the real world devices.
The most straightforward solutions use well known standards
such as WS* or REST to implement device API[4]. Such an
approach is only possible for devices that use full TCP/IP
stack over wired or wireless medium. In most cases these
devices use specialized chips that provide TCP/IP protocol
stack, making these solutions not suitable for usage in com-
modity real world devices. Because of significant overhead
of mentioned solutions, The Devices Profile for Web Services
(DPWS) has been introduced[1] in the literature. It defines a
minimal set of implementation constraints to enable secure
Web Service messaging, discovery, description, and event-
ing on resource-constrained devices. DPWS was mainly de-

PRZEGLAD ELEKTROTECHNICZNY , ISSN 0033-2097, R. 89 NR 6/2013

veloped by Microsoft and some printer device manufacturers
and was supported by various research projects. There was
an attempt to specify how DPWS might be used over UDP
protocol[3]. Web Services for Devices (WS4D) is an initia-
tive bringing Service Oriented Architecture (SOA) and Web
services technology to the application domains of industrial
automation, home entertainment, automotive systems and
telecommunication systems. The WS4D toolkits advance
results of the ITEA project SIRENA[15] that comply to the
DPWS.

Although the fact that DPWS has been designed to be
used in embedded devices, its memory footprint and require-
ments for connectivity is far beyond the capabilities of tiny
microcontrollers equipped with radio transceivers. A com-
monly used and well established standard which specifies
the physical layer and media access control for low-rate wire-
less personal area networks is IEEE 802.15.4[2]. It is main-
tained by the IEEE 802.15 working group and is the basis
for the technologies such as ZigBee, ISA100.11a and Wire-
lessHART, each of which further extends the standard by de-
veloping the upper layers which are not defined in the spec-
ification. The major semiconductor manufacturers like At-
mel, STM and Texas Instruments have in their portfolio radio
transceiver chips that are compliant to this standard, includ-
ing chips like ATmega128RFA1 or STM32W108 that com-
bine radio transceivers and a low power microcontrollers in
the single enclosure. Recently, significant studies have been
conducted to enable the convergence of sensor networks
with the IP world and the connectivity of smart objects to
the Internet. The IETF Working Group IPv6 over Low power
Wireless Personal Area Networks (6LoOWPAN) proposed an
RFC 4944[8] to enable IPv6 packets to be carried over IEEE
802.15.4. Eventually, the IETF Working Group Routing over
Low power and Lossy networks (ROLL) designed a rout-
ing protocol named IPv6 Routing Protocol for Low power
and Lossy Networks (RPL)[14]. RPL was proposed because
none of the existing known protocols such as AODV, OLSR
or OSPF met the specific requirements of Low power and
Lossy Networks (LLN)[12]. The RPL protocol targets large
scale wireless sensor networks (WSN) and supports a vari-
ety of applications e.g., industrial, urban, home and buildings
automation or smart grid.

Constrained Application Protocol (CoAP)[11] is a spe-
cialized web transfer protocol for use with constrained net-
works and nodes for machine-to-machine applications such
as smart energy and building automation. It was as-
sumed that constrained nodes often have 8-bit microcon-
trollers with small amounts of ROM and RAM, while net-
works such as 6LoWPAN often have high packet error rates
and a typical throughput of 10s of kbit/s. CoAP provides a
method/response interaction model between application end-
points, supports built-in resource discovery, and includes key
web concepts such as URIs and content-types. CoAP easily
translates to HTTP for integration with the web while meet-
ing specialized requirements such as multicast support, very
low overhead and simplicity for constrained environments.
CoAP protocol provides also mechanisms for observing state
changes without the necessity of constant pulling the device
by the client.

Discovering and interacting with real world devices

In the motivating scenario, Bob does not deal with low
level configuration issues because all the devices installed at
home where discovered and then used by the smart applica-
tion installed on his personal device. From the smart applica-

222

tion point of view, interacting with real world device should not
differ from interacting with other application’s building block,
specific for the device operating system. Invoking an action
on the real world device should be similar as e.g. opening a
webpage in the webrowser installed by the user on the mobile
device.

Device should advertise its URL of provided service,
type of the device and a meta-data that might be used by
the user to distinguish particular one among available ones.
These data might be represented as a number of key-value
pairs as presented in Fig.1.

Real World
Device
— URL=[aaaa::8], type=TauronMeter, Real World
; {M=Tauron,Media=watre, SN=42445} Device
P URL=[aaaa::4], type=RGBlamp,
L {M=Foo,SN=6535654}
- Real World
Discovered RGBlamps: Device
'M=Philips,SN=123554,
o {M=Philips, } URL=[aaaa::4], type=RGBlamp, Real World

. {M=0sram,SN=23464}

. {M=Foo,SN=6535654} {M=Philips,SN=123554}

Device

URL=[aaaa::4], type=RGBlamp,
{M=0sram,SN=23464}

Fig. 1. Example real world devices and their description

In our concept of smart applications platform as pre-
sented in Fig.2, devices of the same type are represented
as the single service in the OS for mobile devices. The ap-
plication uses these devices by invoking methods on service
representing the type of the device by providing a meta-data
that uniquely represents the device as a context.

Smart App Smart App Smart App

Device Device

System Protocol Driver
Services Enabler

Smart Device OS

Fig. 2. Smart applications

In our concept, devices are discovered by the Device
Protocol Enabler that uses the selected discovery protocol
and provides the list of devices and accompanying meta data.
It can also download, based on the device type, the proper
Device Driver from the application market as a typical ap-
plications and be automatically installed. Presented concept
might be adapted to the existing OS for mobile devices such
as Android OS, Windows Mobile, iOS and others.

The next sections discuss the protocol stack and tech-
nologies used for implementation of the prototype system.

Protocol Stack for Real World Devices

Analysis of the work done in the area of smart elec-
tronic devices led to the conclusion that the most promising
approach to enabling service orientation for real world de-
vices seems to be the usage of IP protocol stack on small
embedded microprocessors equipped with radio transceivers
compliant to IEEE 802.15.4 standard. The proposed proto-
col stack for embedded devices is presented in Fig.3. There
are a few operating systems for small embedded devices that
provide IP connectivity. TinyOS[7] is a free and open source
component-based operating system written in the nesC pro-
gramming language as a set of cooperating tasks and pro-
cesses. It contains the BLIP library, that is an implementa-
tion of a number of IP-based protocols. The second, most
promising operating system is Contiki that is an open source
implementation for networked, memory-constrained systems
with a particular focus on low-power wireless devices. Exam-

223

ples of where Contiki is used include street lighting systems,
sound monitoring for smart cities, radiation monitoring sys-
tems, and alarm systems.

User Application

[wstp | [comp |
\ uDP |

\ IPV6 (6lowPAN) =

‘ 802.15.4 ‘

Fig. 3. IP protocol stack for embedded devices

Contiki provides three network mechanisms: the ulP
TCP/IP stack [5] which provides IPv4 and IPv6 networking
and the Rime stack, which is a set of custom lightweight net-
working protocols designed specifically for low-power wire-
less networks. The IPv6 stack was contributed by Cisco and
was at the time of release, the smallest IPv6 stack to receive
the IPv6 Ready certification. The IPv6 stack also contains the
RPL routing protocol for low-power lossy IPv6 networks and
the BLOWPAN header compression and adaptation layer for
IEEE 802.15.4 links. Contiki contains also the implementa-
tion of CoAP protocol called Erbium that implements coap-8
specification.

Service discoverability

Service discovery protocols are network protocols which
allow automatic detection of services offered by the devices
on a computer network. We have analysed several discover-
ability mechanisms designed for IP enabled devices including
Service Location Protocol (SLP)[6], Jini, Apple Bonjour and
WS-Discovery in DPWS[1]. Finally we have decided to im-
plement a simplified version of SLP, which has been called
1SLP.

The SLP is a service discovery protocol that allows com-
puters and other devices to find services in a local area net-
work without prior configuration. Service Location Protocol
may work in distributed manner, where Service Agents (SA)
that provides services and Service Users (SU) that are inter-
ested in services are discovered using multicast communica-
tion. Another possibility requires usage of the additional node
acting as Directory Agent (DA) being the service registry and
changing communication to client-server model. For devices
with constrained resources it is preferred option for discover-
ing services. Therefore, even in this case, DA is discovered
using multicast communication. We think that resource con-
strained devices should not implement multicast communica-
tion because it consumes too much resources.

R
é P%/;‘i\f%\

[

‘:\ SLPSA/ 1\5LP5A/2
@ @

SLP SA

)
&

Fig. 4. Coexistence of uSLP and RPL

We have analysed the network layer protocol used in
the IP communication for sensor networks and this led us to
the conclusion that SLP DA could be installed on the Border
Router for RPL routing protocol. This concept is presented
in Fig. 4. uSLP uses the same frame format as typical SLP
but it does not support multicast discovery. Therefore it can
not discover SLP Directory Agent, but assuming that it is in-

PRZEGLAD ELEKTROTECHNICZNY , ISSN 0033-2097, R. 89 NR 6/2013

stalled on the RPL border router, wireless device can send
registration packets without prior discovering of SLP DA, be-
cause in RPL protocol border router is known to all of the
nodes. The sequence diagram representing interaction be-
tween SLP Directory Agent, SLP User Agent on the smart
device and uSLP Service Agent on real world device is pre-

sented in Fig.5.

Real World Device SLP DA
SLP SA SLP UA

1 i i

DA Advertisement (unicast)
SLP Reglstratlon (unicast) “‘\—\;s
SLP Query (unicast)—
SLP Reglstratlon (umcast] /
~-SLP Response (unicast)
SLP Reglstratlon (umcast] \‘“~—\$

1 |
M] DA Discovery (multicast)

M

Fig. 5. Service registration and discovery using SLP and pSLP pro-
tocols

Because of the fact that Contiki OS does not provide im-
plementation of any discoverability mechanisms, we have de-
cided to implement uSLP as the Contiki process contained in
a library that might be used in any application.

Smart Applications

The modern operating systems are designed in the way
that might be executed on different hardware platforms. Ker-
nels of these systems are designed in the modular and
generic way, that drivers for hardware peripherals might be
dynamically loaded during runtime or linked during compi-
lation time. Applications and drivers for operating systems
might be provided by the communities and published on the
Internet for future usage by interested users. There are sev-
eral operating systems for personal devices such as Win-
dows Mobile, iOS, BlackBerry but Android OS is expected
to be the most widely used. While it is designed primarily
for smart phones and tablets, the open and customizable na-
ture of the operating system allows it to be used on other
electronics, including laptops and netbooks, smartbooks and
smart TVs (Google TV).

Realization of the prototype smart application platform
for Android OS has been performed in the two stages. First
was regarded to verify IPv6 and multicast support by Android
OS, while the second stage was aimed to design architecture
of smart application platform according to the architecture of
the operating system.

Android is a Linux-based operating system and allows
IPv6 communication what has been tested on Android 2.3
and 4.0+. Android allows also to send and receive UDP
multicasts, so it was possible to use SLP protocol library in
the applications. LiveTribe library has been used for SLP
discovery and Ccalifornium for accessing services using
CoAP protocol.

Device Protocol Enabler has been implemented as sep-
arate application that registers service in Android OS and
was accessible via IPC communication after binding to the
service by sending Android intent:

org.smartapps.enabler.coap

It has been decided to use Play Store for uploading de-
vice drivers and assigning to them package names as fol-
lows:

org.smartapps.devdrv. [type]
where type is the type used as one of the property in SLP

PRZEGLAD ELEKTROTECHNICZNY , ISSN 0033-2097, R. 89 NR 6/2013

to describe real world device as presented in Fig.1. After
installation, device driver registers itself as a service in the
Android OS and was accessible via IPC communication in
the similar way as Device Protocol Enabler.

Smart application written for Android OS can discover
devices of appropriate type by binding to the Device Protocol
Enabler service and invoking discovery method. As a result,
list of matching devices will be returned. Application then
might use this service to download appropriate Device Driver
for the selected device type. Since that time, application can
use directly the Device Driver service binding to it and in-
voke methods from the well known interface published by the
manufacturers or alliances providing in each method as a pa-
rameter proper context containing meta data that represents
selected device instance.

Network Connectivity

Usage of IP protocol stack for both personal and real
world devices enables their interconnectivity as presented in
Fig.6. Although the fact, that these devices use the IP proto-
col, they use different medium access control protocols. IPv6
requires the maximum transmission unit (MTU) to be at least
1280 Bytes, which is met by the IEEE 802.3 and IEEE 802.11
standards used by the personal devices but not by the real
world devices using IEEE 802.15.4 where the packet size is
127 Bytes. For these networks, 6lowPAN specification has
been defined by RFC4944[8] where adaptation layer respon-
sible for IPv6 packet header compression and reassembling
has been defined.

—

[Internet

~—

Integrated
Router

IPv6

SLP DA
6lowPAN/RPL

Real World Devices
Personal Devices

(e.g. TV sets, desktop computers)
Fig. 6. Example network topology used in the use case scenarios

IPv4/1Pv6

802.11.b/g

Personal Devices
(e.g. mobile phones tablets)

Due to unavailability of network equipment equipped
with the 6LoOWPAN interfaces, the device enabling that com-
munication protocol and integrating other compliant with
IEEE 802 standards has been developed. It has been de-
cided to use one of the popular domestic routers based
on System on Chip (SoC) design integrating a processor
compatible with the MIPS architecture. Such devices use
Linux operating system and provide several communication
interfaces including network interfaces, USB and GPIO. The
router has been extended by additional circuit board with ra-
dio transceiver and microprocessor running Contiki OS and
acting as an RPL border router as depicted in Fig.7. This ad-
ditional board has been connected via USB port acting as a
virtual serial interface, and represented in the Linux as tun0
interface. For transmitting IP packets over serial interface,
SLIP[10] protocol has been used.

In the prototype solution, TP-Link 1043ND router has
been used due to its available memory and unproblematic
installation of OpenWRT[9] Linux distribution. Further, it has
been decided to use additional circuit board based on AT-
megal128RFA1 processor running Contiki 2.6.

224

Integrated
Router SoC

mipS architecture_tUN0 FTDI
ethl
|
Tagging

Atmega
128RFA1

Programmable switch

—‘ Port0 H Port 1 H Port 2 H Port 3 H Port4 H H }

WAN LAN 1 LAN 2 LAN 3 LAN 4 WiFi 802.15.4

Fig. 7. Internal architecture of the Integrated Router

Because of the fact that integrated router acts as a RPL
Border Router, it was necessary to deploy an SLP DA dae-
mon. For this purpose it has been necessary to compile
OpenSLP 2.0 for the MIPS architecture, because the pre-
vious stable version does not support IPv6 addresses for ad-
vertised services.

Fig. 8. The prototype of integrated router based on TP-Link 1043ND
router and Zigduino board

Example Device
For the concept verification purposes a simple de-
vice has been developed based on Zigduino circuit board
presented in Fig.9, which incorporates very low cost AT-
mega128RFA1 microcontroller and IEEE 802.15.4 radio. Ad-
ditionally, the device was equipped with the RGB LED light
source and its functionality was exposed as a service. The
following CoAP interface has been implemented:
e POST /light/<color> — turns on or off light in the
corresponding color
e GET /light/<color> — returns whether the corre-
sponding color of light is enabled, for <color> in
{red, green, blue}

Fig. 9. Zigduino based RGB lamp

Example device uses pSLP library to enable node dis-
covery. It registers a service with the following SLP proper-

225

ties:
e type, which equals rgblamp
e SN — serial number, used to distinguish different devices
of the same type in single WSN network

According to the CoAP specification, list of avail-
able resources that were exposed by the device could
be acquired by invoking GET query to relative URI
/.well-known/core/. Nevertheless, this is not neces-
sary, because CoAP interface is defined by device type pa-
rameter in SLP properties, thus device driver used by smart
application is aware of the available resources.

Our implementation meets significant resource con-
straints as it is characterized by small memory footprint. Mi-
crocontroller flash memory usage of each code module was
presented in the table.

Module Size
Contiki OS 50kB
uSLP 1kB
CoAP 8kB
Lamp Application | 8kB
Total 67kB

Example Aplication

In order to test the capabilities of the previously men-
tioned example device and to verify smart apps platform
concept, mobile application for Android OS has been de-
veloped. To provide communication between the applica-
tion and the physical device it was required to prepare
an Android driver and assign it with the package name
org.smartapps.devdrv.rgblamp as assumed in the
platform concept.

The example application was called WeatherColours
and it allowed to choose RGB lamps which could reflect
weather conditions by changing their colors. It used the
Yahoo! Weather API to fetch weather forecast for localiza-
tion specified by the user at first application launch. It also
allowed to change localization and some other parameters
such as weather check frequency or displayed units at some
point later by using appropriate settings menu.

As mentioned before, the user could choose which RGB
lamps should reflect weather conditions, as the application
provides list of automatically discovered lamps. It was as-
sumed that the required driver has already been installed,
otherwise appropriate message appeared showing some in-
formation about driver installation process. The list of avali-
able devices not only contained some meta-data describing
RGB lamps but it also displayed color mark that reflect cur-
rent lamp status and help to simply distinguish unassigned
lamps.

After selecting one of available devices the user could
configure if weather status should regard current weather
conditions, or today or tomorrow forecast. In such a way
the user could have e.g. three lamps each of which re-
flects weather for different time. The application also pro-
vided menu which was dedicated to configure colors for par-
ticular weather status. Fig.10 depicts the screenshot of the
example application.

Conclusion

The paper discusses the problems of interaction be-
tween service enabled real world devices and a smart appli-
cations for personal devices in the future pervasive systems.
The paper proposes the protocol stack for pervasive devices
that has been designed with respect to the constrained com-
putational resources of the real world devices. Additionally,

PRZEGLAD ELEKTROTECHNICZNY , ISSN 0033-2097, R. 89 NR 6/2013

Weather RGB lamps
QS &%
2 4]
N o
Settings Colours
Tt eatie

Fig. 10. Screenshot of example application

uSLP service discovery protocol and the integrated router
that might be used as a residential multi purpose gateway
have been designed. Finally, the concept of smart application
platform that simplifies development and enables reusabil-
ity of smart applications for personal devices has been pre-
sented.

The practical example of smart application presented in
the paper proves that enabling software orientation in perva-
sive smart systems is possible with the low additional cost
necessary to establish IPv6 network connectivity using avail-
able electronic modules and devices, so we might expect that
they will appear in the mass market shortly revolutionizing the
way of using home appliances.

Acknowledgments

The work has been supported by the POKL.04.01.01-00-
367/08-00 grant and partly supported by the POIG.01.03.01-
00-008/08 and MNiSW 11.11.230.015 grants.

REFERENCES

[1] OASIS Web Services Discovery and Web Services Devices
Profile, 2005.

[2] IEEE Standard for Information Technology- Telecommunica-
tions and Information Exchange Between Systems- Local and
Metropolitan Area Networks- Specific Requirements Part 15.4:
Wireless Medium Access Control (MAC) and Physical Layer
(PHY) Specifications for Low-Rate Wireless Personal Area Net-
works (WPANSs). Technical report, 2006.

[3] OASIS SOAP-over-UDP—Version 1.1, 2009.

[4] P. Bachara, J. Dlugopolski, P. Nawrocki, A. Ruta,

W. Zaborowski, and K. Zielinski. Embedded soa. In SOA

Infrastructure Tools - Concepts and Methods. Poznan Univer-

sity of Economics Press, 2010.

Adam Dunkels. The ulP Embedded TCP/IP Stack The ulP 1.0

Reference Manual, 2006.

[6] E. Guttman, C. Perkins, J. Veizades, and M. Day. Service loca-

tion protocol, version 2, 1999.

P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse,

A. Woo, D. Gay, J. Hill, M. Welsh, E. Brewer, and D. Culler.

TinyOS: An Operating System for Sensor Networks Ambient

Intelligence. In Werner Weber, Jan M. Rabaey, and Emile

Aarts, editors, Ambient Intelligence, chapter 7, pages 115-148.

Springer Berlin Heidelberg, Berlin/Heidelberg, 2005.

G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler. Trans-

mission of IPv6 Packets over IEEE 802.15.4 Networks. RFC

4944 (Proposed Standard), September 2007.

Claudio E. Palazzi, Matteo Brunati, and Marco Roccetti. An

openwrt solution for future wireless homes. In Proceedings

of the 2010 IEEE International Conference on Multimedia and

Expo, pages 1701-1706, Singapore, July 2010.

[10] J.L. Romkey. Nonstandard for transmission of IP datagrams
over serial lines: SLIP. RFC 1055 (Standard), June 1988.

[11] Z Shelby, C Bormann, and B Frank. Constrained Appli-
cation Protocol (CoAP). An online version is available at
http://www.ietf.org/, 13(draft-ietf-core-coap-13.txt):1-109, June
2013.

5

[7

8

[9

PRZEGLAD ELEKTROTECHNICZNY , ISSN 0033-2097, R. 89 NR 6/2013

[12] Heecheol Song, Sang Hyuk Lee, Soobin Lee, and Hwang Soo
Lee. 6LoWPAN-based tactical wireless sensor network archi-
tecture for remote large-scale random deployment scenarios.
In Proceedings of the 28th IEEE conference on Military com-
munications, MILCOM’09, pages 1044—1050, Piscataway, NJ,
USA, 2009. IEEE Press.

[13] Mark Weiser. The computer for the 21st century. Mobile Com-
puting and Communications Review, 3(3):3—11, 1999.

[14] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis,
K. Pister, R. Struik, J. Vasseur, and R. Alexander. RPL: IPv6
Routing Protocol for Low-Power and Lossy Networks. RFC
6550 (Proposed Standard), March 2012.

[15] Elmar Zeeb, Andreas Bobek, Hendrik Bohn, Steffen Pruter,
Andre Pohl, Heiko Krumm, Ingo Luck, Frank Golatowski, and
Dirk Timmermann. WS4D: SOA-Toolkits making embedded
systems ready for Web Services. In 3rd International Confer-
ence on Open Source Systems, Embedded Workshop on Open
Source Software and Product Lines, Limerick, Ireland, June
2007.

[16] H. Zimmermann. OSI Reference Model-the ISO model of ar-
chitecture for open systems interconnection. /EEE Trans. Com-
munication (USA), COM-28(4):425-432, April 1980. IRIA/Lab.,
Rocquencourt, France.

Authors: Ph.D. eng. Tomasz Szydfo, eng. Szy-
mon Gut, eng. Barttomiej Puto, AGH University of Sci-
ence and Technology, Faculty of Computer Science, Elec-
tronics and Telecommunications, Department of Computer
Science, al. A. Mickiewicza 30 30-059 Krakow email:
tomasz.szydlo@agh.edu.pl

226

