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Abstract. The PSO is a random algorithm for solving complex optimization problems. However, in order to provide this algorithm to be efficient, it is 
often necessary to make several numerical computations. To reduce the costs of computations, the new PAPSO algorithm was proposed. The 
presented algorithm was examined on four test functions then it was applied for determination of the optimal geometry of the coil arrangement. 
 
Streszczenie. W artykule zaproponowano algorytm optymalizacji rojem cząstek z zastosowaniem wektora kąta fazowego (PAPSO). 
Zaproponowany algorytm przetestowano za pomocą czterech funkcji testowych, a następnie zastosowano do rozwiązania zadania polegającego na 
wyznaczeniu optymalnej geometrii układu cewek. (Algorytm PAPSO do optymalizacji układu cewek). 
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Introduction 

Particle swarm optimization (PSO) is a stochastic, 
computational technique inspired by the social behavior of 
a swarm of bees firstly introduced by Kennedy and Eberhart 
in 1995 [1,2]. It has been applied successfully in many 
application areas including artificial neural network 
training, fuzzy system control dynamic web organizing 
and parameter selection [3, 4, 5, 6, 7]. The PSO 
algorithms have also found an application for solving 
several optimization problems in electromagnetism [8, 9].  

In the case of traditional optimization methods, the PSO 
algorithm is characterized by a high efficiency in solving 
complex global optimization problems. However, in order to 
provide the algorithm to be efficient, it is often necessary to 
make several numerical computations of the optimized 
function, particularly in case of multimodal ones with 
numerous local minima determined in a multidimensional 
search space. To obtain a required accuracy in such cases, 
a considerable number of iterations is needed together with 
an extended swarm cardinality, and therefore more 
computations of the optimized function are required. Each 
determination of the optimization function value needs 
specific computational expenditures, which are higher when 
the fitness function is more complex. Due to large 
computational expenditures, a limitation in the number of 
the fitness function calculations is therefore required 
together with no loss of the algorithm efficiency as well as 
the results accuracy. 

In order to reduce the costs of computations, the 
new Phase Angle Particle Swarm Optimization (PAPSO) 
algorithm with the phase angle vector was introduced. This 
algorithm represents the development of the concept 
proposed by Zhong and Qian [10].  

In the standard PSO algorithm [11, 12] a potential 
solution to a problem represents a swarm of random 
particles, each of which has its own position and velocity 
vector. For each particle, in the following iterations, a new 
velocity vector responsible for the particle movement within 
the search space is calculated, and this vector takes part in 
establishing of the particle new position. 

In the θ-PSO algorithm [10], determination of the particle 
velocity was omitted. Instead of the velocity vector, the 
phase angle vector was introduced. The formula of the 
phase angle increment update is responsible for the particle 
movement within the search space. The particle position is 
determined by the mapping of the corresponding angles. 
A detailed description of θ-PSO can be found in [10]. 

In the new PAPSO algorithm a number of significant 
modifications was introduced. The modifications concern 
both operation mechanism, updating equations as well as 
the way the particle move and gain the information. 

The Optimization Problem 
The proposed PAPSO algorithm was tested on two 

kinds of optimization problems. First it was examined on 
benchmark functions [13, 14]. Then it was applied for 
determination of the optimal geometry of the cylindrical coil 
arrangement described in [15].  
 
Benchmark Test Functions 

The effectiveness of the proposed PAPSO algorithm 
was examined on four benchmark functions [13, 14] and the 
results were then compared with performance of θ-PSO and 
standard PSO algorithm. The fundamental information of 
the functions used for the investigation is depicted in 
Table1. 
 
Table 1. Optimization test functions 

Function Dimension Range of x Optimal f Accuracy 
Camel 2 (-100,100) -1,0316 0,0001 
Sphere 30 (-100,100) 0 0,0001 
Griewank 30 (-600,600) 0 0,1 
Rosenbrock 30 (-30,30) 0 100 

 
Coil Arrangement 

The optimization problem relies on the determination of 
the optimal geometry of the coil arrangement generating 
magnetic field with the specific parameters [15]. The 
considered set consists of two identical coils that form the 
cylindrical coil arrangement. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1. The cross section of the coil arrangement generating 
magnetic field with the controlled gradient 
 

We consider the distribution of the magnetic field acting 
along the z-axis of the Cartesian coordinate system. The xy-
plane represents a symmetry plane, and the distance 
between those coils is 2Z0. The average radius of the coil is 
R0, and the sides of the coil cross section are 2a and 2b 
respectively (Fig.1). The J0 parameter represents density of 
the current flowing within the coil. If the currents of the 
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opposite directions flow through the coils, the magnetic field 
in the centerline of the coil arrangement symmetry is 
H(0,0,0) = 0. According to [16], the magnetic field along the 
z-axis is as follows: 

For the purpose of the investigation, we assumed that  
J0 = 250 A/m2, Za=0.7m, D=0.6 m, d=0.25m, q=0.4m, L=1m 
and additionally introduced geometrical constraints as 
follows: R0+b≤D, R0–b≥d, Z0–a≥q, Z0≤L, and a·b·R0≤0.006m3. 
For these assumptions, the a, b, R0, Z0 parameters are 
determined in such a manner to obtain the largest possible 
gradient of the magnetic field in an active area Za and to 
maintain simultaneously the maximal possible linearity of 
this gradient. The fitness function is defined as follows: 
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The factor k=0.15 determines the priority of the field 
gradient magnitude with reference to its linearity. 
 
Phase Angle Particle Swarm Optimization algorithm 

In this method, a number of significant modifications and 
extensions in comparison to the original version was 
introduced. The operation mechanism and updating 
equations were rebuilt. The introduced changes concern 
both the way of the particle move and the way of the 
information collecting by the swarm during searching for the 
optimal solution. This helps the algorithm to explore the 
search space more efficiently. The PAPSO algorithm 
operation proceeds as follows: 

1. Initialization, which relies on random attribution of the φ 
angle to each particles. 

2. Establishing the particle position according to the 
formula [10]: 
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3. Evaluation of the particle position by means of the 
fitness function 

4. Reduction of the swarm cardinality by comparing the 
successive particles and the selection of better fitted 
particle (between two neighboured ones). 

5. Establishing the best phase angle φpb, for each particle, 
by which the particle has managed to achieve its best 
position. 

6. The choice of the particle of the φgb
 
angle, by which the 

particle has achieved its best position within the whole 
swarm. 

7. Updating the phase angle increment vector of each 
particle within the swarm according to the formula: 
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8. Assigning two new phase angles to each particle, 
(u[-1;1]) according to the formulae:  
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In this way, each particle with two new phase angles will 
obtain two proposals of its position. 

9. Updating the particle location using (3) equation. 
10. Evaluation of the particle position by means of the 

fitness function. 
11. Comparison and selection of the new phase angle φ for 

each particle. 
12. Repetition of 5-11 steps until the algorithm stopping 

criterion is met. 
Where:  

xi
j -the position vector of the i–th particle in the j-th 

iteration,  
φi

j+1 -the phase angle increment of the i–th particle,  
φi

pb -phase angle of the personal best solution of the i-th 
particle, 

φgb -the phase angle of the global best solution,  
w -the inertial weight that determines the deviation of the 

particle original movement direction,  
c1, c2, c3 -the acceleration factor that determines how much 

the particle is influenced by its best phase angle and 
how much the particle is influenced by the whole 
swarm,  

r1, r2 -the randomly generated angle in the range (0o,90o) 
for each iteration and for each particle. 

The φi
j+1 value is limited by the (φmin; φmax) interval. As in 

case of φi
j+1 the value of the φi

j angle is limited and 
belongs to the (φmin; φmax) interval. 
 
Results 
Benchmark Test Functions 

The first simulation tests of the new PAPSO algorithm 
were carried out on the benchmark function. The 
parameters of optimized functions are listed in Table 1. The 
obtained results were then compared with the 
achievements of the standard PSO and θ-PSO algorithms 
described in [10]. The computations were executed with 
inertia weight w = 0,6 and acceleration coefficients c1 = c2 = 
1,7. The maximum number of iterations was established to 
1000. The exemplary results of the tests performed for 40 
particles of the swarm are depicted in Table 2. The 
presented values for PAPSO were averaged over 30 trials. 
 

Table 2.  PSO, θ-PSO and PAPSO algorithm performance 

Function Algorithm
Number of iterations Number of 

achieved 
solution(%)Minimum Average 

Camel PAPSO 25 41 100 
 θ-PSO 26 40 100 
 PSO 32 60 100 
Sphere PAPSO 334 383 100 
 θ-PSO 352 406 100 
 PSO 577 716 100 
Griewank PAPSO 219 317 100 
 θ-PSO 231 334 100 
 PSO 375 461 100 
Rosenbrock PAPSO 180 279 100 
 θ-PSO 194 283 100 
 PSO 569 2268 55 

 

The investigation of benchmark function confirmed the 
effectiveness  of the proposed PAPSO algorithm. In almost 
all cases the new algorithm turned out to be more effective 
than the other algorithms used for the tests. For the tested 
functions (except Camel) the minimum and average 
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numbers of iterations were lower than those of θ-PSO and 
PSO. In order to find the optimum of this function with 
required accuracy fewer number of iterations was therefore 
needed. For Camel function the results of PAPSO and θ-
PSO were almost the same but they were much better than 
the standard PSO. 
 
Coil Arrangement 

The study on an effectiveness of the proposed method 
used to determine an optimal geometry of the coil 
arrangement was undertaken by means of a computer 
program written in Mathematica. The computations were 
executed with acceleration coefficients c1 =0.4, c2 = c3 =0.6. 
The parameter w was used in the range 0.8 to 0.3 with a 
linearly decreasing, whereas the maximum number of 
iterations was fixed to 1000. The results were then 
compared with the achievements of the standard PSO and 
the θ-PSO algorithms. 

The exemplary results of the tests performed for 10, 30, 
50 and 80 particles in the initial population of the swarm are 
depicted in Fig. 2. All the values were averaged over 50 
trials. 

 
Fig.2. The number of accurate solutions versus the swarm 
cardinality for standard PSO, -PSO and PAPSO 
 

The proposed algorithm turned out to be effective with 
respect to the number of accurate results and the number of 
iterations needed to achieve them. In comparison to the 
standard PSO (Table 3), the new algorithm was able to find 
more accurate solutions within a few times lower iteration 
number. 
 
Table 3. The relationship between the swarm cardinality and the 
number of iterations to achieve the accurate solutions for the PSO, 
θ-PSO and PAPSO 

Algorithm The number of particles in the swarm 
10 30 50 80 

PAPSO 107 82 64 57 
θ-PSO 131 112 76 64 
PSO - 642 567 531 

 
Moreover, the algorithm also achieved to be efficient for 

small populations of particles. In case of PSO for 10 
particles in the swarm, no accurate solution was managed 
to be obtain when the number of iterations was as high as 
1000, whereas the PAPSO could find 32% optimal solutions 
within only 107 iterations (on average). In most cases, the 
results were also more accurate than for the θ-PSO 
algorithm. Only for the population size of 10 particles, the 
PAPSO algorithm found 3% fewer accurate solutions than 
θ-PSO, but for lower number of iterations of even 18%. 

As far as the optimal solutions are concerned, the best 
results were obtained for large swarm. For the populations 
comprising 80 particles, PAPSO algorithm could find over 
80% accurate solutions. It was also found, that the 

proposed new method gave the solutions of the same 
accuracy, and faster exploration of the search space. 
 
Summary 

In the following study, the new PAPSO optimization 
algorithm with the phase angle vector was proposed. In the 
proposed method, determination of the velocity vector was 
omitted. Instead of the velocity vector, the phase angle 
vector was introduced. The equation of the phase angle 
increment update is responsible for the particle movement 
within the search space. The particle position is determined 
by the mapping of the corresponding angles. 

The proposed algorithm was tested on benchmark test 
functions and was applied to determine the optimal 
geometry of the coil arrangement generating magnetic field 
with the specific parameters. The results were then 
compared with performances of the standard PSO and the 
θ-PSO algorithms. The calculations obtained in this study 
confirmed efficiency of the proposed algorithm. 
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