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Diffused mode of vacuum arc in high current interrupters 
 
 

Abstract. Using stationary solutions for electron plasma column in axial external magnetic field the analysis of spreading of initially high 
concentrated local currents is done. Early stage homogenization of local discharge is considered.  It is shown that fast relaxation of electron density 
profile towards equilibrium is achieved with decreasing of maximum density more than 1000 times. 
 
Streszczenie.  Wykorzystując stacjonarne rozwiązania dla plazmy elektronowej w zewnętrznym, osiowym polu magnetycznym przeprowadzono 
analizę rozmywania silnie skoncentrowanych lokalnych wyładowań . Skupiono się na wczesnym stadium procesu homogenizacji. Wykazano, że 
zachodzi szybka relaksacja do rozkładu równowagowego z równomiernym rozkładem gęstości prądu i maksymalną wartością gęstości zmniejszoną 
ponad 1000 razy (Jednorodne wyładowanie w próżniowych wyłącznikach wysoko prądowych). 
 
Keywords: high-current interrupters, electrodes erosion, stationary solution for electron plasma in axial magnetic field,. 
Słowa kluczowe: wyłączniki wysoko prądowe, erozja elektrod, stacjonarne rozwiązania dla plazmy elektronowej w osiowym polu 
magnetycznym. 
 
 
Introduction 

The main problem in constructing high current 
interrupters is high erosion of electrodes due to vacuum arc 
which is unavoidable especially during disconnecting. 
Particularly harmful is multiple arcs electric discharge with 
very non-uniform distribution of current on the surface of 
electrodes. To avoid such possible local high concentration 
of current an external axial magnetic field is applied in 
vacuum interrupters [1, 2, 3, 4]. Because of shielding effect 
in plasma (Yukawa-type electric potential 

(1 / ) exp( / ),   - r rD D  Debye's radius ) magnetic forces 

can dominate over electric ones leading to pinch effect 
(parallel currents attract). The strong external axial 
magnetic field dominates over the self magnetic fields and 
can radially confine plasma in so called diffused mode with 
uniform distribution of current.  

We find stationary solutions of Vlasov-Maxwell 
equations describing radially symmetric electron plasma 
column in macroscopic approximation. Next we obtain also 
the thermal equilibrium solutions. We use these solutions to 
analyze mechanism of smearing of local high density 
currents. 

We propose the configuration of electrodes presented in 
Fig.3  self-producing high external axial magnetic field. 
 
Stationary solutions 

In short time scale which depend on density of particles 
binary collisions can be neglected and plasma is described 
by Vlasov-Maxwell equations [6, 7, 8]: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

where: E,B – electric and magnetic fields, Bext = B0ez, B0 = 
const,  c – light velocity, qj – charge of  j-component of 
plasma, fj – one-particle distribution function of  j-component 
of plasma. Thus,  fj(t, x, p)d3xd3p – number of particles of  
j-component located in volume  d3xd3p  at the phase space 
point (x, p) at time t,  nj(t, x) = d3p fj(t, x, p) – particle 
density of  j-component,  (t, x) = jqjnj(t, x) – charge 
density, J(t, x) =  jqj d

3p v fj(t, x, p) – current density. 
     For long time binary collisions lead to thermal equilibrium 
(Maxwell distribution) which is the solution of Boltzmann 
equation (Vlasov equation with collision term on the right-
hand side). 
     It is convenient to describe plasma in terms of 

dimensionless parameters: 2
p j j j j4 /n q m   - plasma 

frequency of  j-component (mj – mass of  j-component), 

cj j j| / |q m c  B - cyclotron frequency of  j-component.  
  We consider nonneutral electron (qj = - e, mj = me) 
plasma column of infinite axial extent confined radially by 
external uniform axial magnetic field as it is shown in Fig.1. 
We use the cylindrical coordinates (r, , z) where:  x = 
rcos  and  y = rsin.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
Fig.1. Plasma column confined by external magnetic field 
 

We assume azimuthal symmetry /  0, and 
independence on  z-coordinate /z  0. Infinite extension of 
plasma column means that processes in neighbourhood of 
electrodes are neglected. We simply assume that charges 
produced at one electrode are annihilated at the other one. 
Independence on  z-coordinate corresponds to our goal of 
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finding distribution in  x-y plane of current lines (current 
density J(t, x) integrated with respect to z).  
     As first step we check if there exist the stationary 
solution corresponding to ideally diffused mode described 
by the rectangular density profile 
 
(1) 
 
 
In this case charge density  (r) is constant  for 0  r  rb 
and equal to zero for  r > rb. So the steady-state solution 
(/t  0) for electric field  Er(r) is well known solution of 
electrostatic Poisson's equation (Gauss law and symmetry 
consideration) 
   

           
 
 
in the form 
 
 
         
 
 
For electron plasma this solution takes form 
 
 
(2) 
          

 
 

 

where 
24 /pe ene m   - electron plasma frequency. 

     Motion in the plane perpendicular to z-axis in the plasma 
column follows from radial forces balance between outward 
centrifugal and electrical forces and inward magnetic force: 
 
 
 
  

where: (r) – angular velocity. Substituting the solution (2) 
and using the definition of electron cyclotron frequency 

ce 0 / eeB m c   we obtain the following algebraic equation 

for angular velocity: 
 
(3) 
 
 
Solutions of the equation (3) 
 
 
(4) 
 
 
do not depend on r so plasma treated as charge fluid 
behaves as rigid body (rigid rotator) in the case of 

rectangular density profile. Solutions 
 as functions of the 

parameter 2 22 /e pe ces    are shown in the picture  Fig.2.  

Equilibrium is  possible only for 1es   and this condition 

gives us estimation for minimum value of applied external 
magnetic field 
 

                                      
2
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in the case of electron plasma. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2. Rigid rotor solutions for angular velocity 
 
Thermal equilibrium 

The above simple model of ideally diffused mode with 
rectangular density profile corresponds to the so called cold 
plasma when binary collisions between particles are 
neglected. More realistic model is described by Boltzmann-
Maxwell equations. It is very difficult  problem to find 
solutions of these equations, even approximate ones, for 
finite time. However for infinite time binary collisions lead to 
thermal equilibrium described by Maxwell distribution. In 
practice, for typical time of disconnecting an interrupter, 
plasma in vacuum arc is in the state close to thermal 
equilibrium. Thus the thermal equilibrium solutions give us  
useful information about evolution of vacuum arc.             

So we postulate the specific form of one-particle 
distribution function corresponding to Maxwell distribution in 
thermal equilibrium. Such a distribution function is used in 
Poisson equation. 

It is well known fact that one-particle distribution function 
depending on x and p only through constants of motion of a 
single particle in self-consistent equilibrium electromagnetic 
field solves exactly the steady-state ( / 0t   ) Vlasov 
equation [5,6,7]. This could be verified by direct substitution 
of such a distribution function into Vlasov equation. In our 
rigid-rotor equilibrium there are three following constants of 
motion: 
1. Energy of a particle in electrostatic potential   
     ( ( ) / )rE r r   : 

 
 
 
 

2. Canonical angular momentum: 
 
   
      
3. Axial momentum:  pz 

     In our case of mean azimuthal motion being rigid rotation 
with angular velocity  = const the effective energy is equal 
to  H - P  and the general steady-state solution has the 
form: 
   

                          ( ,  ) ( , )zf r f H P p p  
 

In thermal equilibrium of electron plasma the distribution 
function  takes Maxwell distribution form with respect to 
effective energy   
 
(5) 
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The density profile corresponding to Maxwell distribution 
function (5) is equal 

(6)    
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We have to substitute the density profile (6) into Poisson 
equation   
 
 
(7) 
 
 
Because this equation is highly nonlinear we can not find 
analytical solutions of it. Numerical example solution for 

electron plasma with parameters 2 22 / 0.5e pe ces     and 

1.0001   is illustrated in picture Fig.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3. Example of thermal equilibrium density profile for electron 
plasma 
 
The diameter of the plasma column is approximately given 
by  2rb ≈ 15D  where  D   is Debye's radius.  
 
Diffusing of local high currents 
 Now we perform asymptotic analysis of solution (6) and 
equation (7) based on the numerical solution presented in 
Fig.3.  For typical situation shown in this figure the density 
profile is almost constant in the region  0 br r   not too 

different from the rectangular profile (1). So in this region 
electric field is approximately given by (2). Electrostatic 
potential corresponding to this field is of the form 
 
(8)  
 
For  0 br r   this approximation is very good. For br r  

asymptotic form of the potential corresponding to (2) is of 

the form 2 2 2 2( ) ( / 4 ) ( / 2 ) ln( / )e pe b e pe b br m e r m e r r r     

(continuity condition at  r = rb  was used).  
          With  the asymptotic approximation (8) the density 
profile (6) is equal to 
 
(9) 
 
 
where the polynomial  W()  is given by 

(10) 
 
  From the form of exponential damping factor in (9) and 
asymptotic form of the electrostatic potential in whole region 
it is easily seen that plasma column is radially confined 
( ( ) 0en r   ) provided  W() > 0. Comparing (10) and 

(3), (4) we see that this condition is equivalent to 
 
(11) 
 
for a given parameter se, that is W() > 0 between  roots of  
the polynomial W. Thus all values of the angular velocity of 
rigid rotation laying inside the parabola shown in Fig.2 are 
now possible.  
 In general the density profile ( )en r  is bell-shaped as is 

illustrated in Fig.3. However for values of    near to  or 

  the profile  ( )en r  falls more abruptly tending to the 

rectangular profile (1).  If no special means are applied then 
plasma starts to rotate with the smallest possible angular 

velocity. So    as in numerical solution presented in 
Fig.3. 
 Now we are ready to consider the problem of diffusing of 
local high current discharge. Suppose that in a some small 
region of the diameter ~2mm the big number Ne of electrons 
was initially injected from one of the electrodes. Without 
external magnetic field this concentrated current could lead 
to local erosion of the electrodes. Due to the pinch-effect 
concentration of current can even rise. With axial external 
magnetic field applied this concentration is smeared over 
bigger region and the density profile is given by (6). Now we 
use the numerical solution shown in Fig.3 because this 
solution corresponds to typical experimental situation. For 
comparison we choose such a number of electrons  Ne  that 
corresponds to the axial density n of the numerical solution 
for (6). We assume that the initial local current is diffused 
over the whole surface of an electrode. Typical radius of 
electrodes is equal to 3-5cm. So from Fig.3 we have 
reasonable estimation 10D ≈ 4cm. From the thermal 
electron Debye's radius 
 
(12) 
 
 
where Te ~ 1eV is the electron temperature (work function) 
we find the axial electron density 
 
 
Total number of electrons in column of length ~ 1cm is 
obtained by integration of the density profile of the type 
presented in Fig.3. It is enough to approximate this profile 
by rectangular profile ending at 10D ≈ 4cm so the value of 
this integral can be estimated as follow 
 
 
(13) 
  
 
If such a number of electron  is concentrated in the region 
of diameter ~2mm, that is with radius 40 times smaller, then 
concentration of electrons grows 402 = 1600 times to the 
value 
(14) 
 
   In the case without external magnetic field such a high 
local concentration (14) of electrons can further grow as the 
collisions of these electrons with electrodes produce new 
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electrons and positive ions. This can lead to local high 
concentrated currents that are particularly harmful. They are 
main cause of erosion of electrodes. 
 When the external axial magnetic current is applied 
these local currents are smeared out over the whole surface 
of an electrode producing the so called diffused mode of 
vacuum arc with uniform distribution of a current. Formally 
this diffused mode is achieved in infinite time corresponding 
to transition to thermal equilibrium. In practice this process 
is very quick. The time  td  of diffusing of high local currents 
can be estimated as a few relaxation times tr for electron 
plasma with given electron concentration. The predicted by 
collisional transport theory [8] value of  tr  corresponding to 
concentration (14) is of order tr ~10-5sec. For decreasing 
value of nc during diffusing process  the relaxation time 
grows according to 
 
 
 
 At the end of the diffusing process the value of tr is ~1600 
times bigger 
 
 
Thus it is reasonable to use the value of  tr  equal to 
 
 
 
and estimate the diffusing time as 
 
(15) 
 
 The diffusing time td ~ 1ms much smaller than the half of 
cycle of current in power network and also much smaller 
than time of disconnecting electrodes of interrupter. The 
experiment [9] demonstrates relaxation time up to 5000 
times smaller than predicted by collisional transport theory. 
This is explained by high nonlinearity of the process. 
However experimental parameters of plasma where quite 
different from our problem. 
 
Discussion and conclusions 
 We presented the so called rigid body rotator solutions 
of Vlasov-Maxwell equations in macroscopic approximation 
for the cylindrical plasma column in the external axial 
magnetic field. Next these solutions where generalized to 
thermal equilibrium solutions which model the diffused 
mode of vacuum arc in high current interrupters. Because 
obtained equations are highly nonlinear we can not find 
exact analytical solutions of them.  We used the typical 
numerical solution of obtained equations and asymptotic 
analysis based on the form of this solution to get insight into 
the process of smearing of local high concentration currents 
over the surface of electrodes. This analysis shows the fast 
relaxation of local current towards diffuse mode in thermal  
equilibrium with decreasing of electron concentration more 
than 1000 times. 
 As our analysis is only approximate the experimental 
verification is highly desired. Scaling to  smaller diameter of 
electrodes and corresponding smaller currents  will simplify 
the experimental setup. Fast cameras can be used to 

observe uniformity of the discharge during disconnecting 
electrodes. After appropriate number of cycles of discharge 
the surface of electrodes should be inspected and 
compared with interrupters without external magnetic field. 
The concept of electrodes construction self-producing high 
external axial magnetic field is presented in Fig.4. 
   
 
 
 
 
 
 
 
 
 
 
  
 
 
 
Fig.4. Electrodes self-producing external axial magnetic field 
 
 In the future we plan to check if other exact analytical 
solutions of Vlasov-Maxwell equations exist and looking for 
them. Advanced methods such as the symmetry analysis of 
equations (Lie group theory) seems to be useful to this end. 
More detailed and exact description of an arc discharge in 
interrupters needs the use of full kinetic theory (Boltzmann 
equation). The most desirable but also most difficult is to 
construct method of finding time depending solutions of 
Boltzmann-Maxwell equations. Our only hope is to find such 
an approximate method (asymptotic or perturbation theory) 
based on canonical exact solutions. 
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