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Abstract. Decision-making is an integral part of technical problem-solving. In this study, two decision theories, which are capable to deal with 
uncertain information – Info-Gap Theory and RDM (Relative-Distance-Measure) interval arithmetic, are presented. The paper shows some aspects 
of the robustness function and uses each approach to evaluate the example of charging car battery. The comparison of Info-Gap Theory and RDM-
arithmetic not only improves understanding of these methods, it also suggests some broader insights into robustness understanding. 
 
Streszczenie. Podejmowanie decyzji jest nieodłączną częścią rozwiązywania technicznych problemów. W artykule zaprezentowano dwie metody, 
które rozwiązują problemy z niepewnymi danymi – Teoria Luk Informacyjnych i arytmetyka interwałowa RDM (Relative-Distance-Measure). 
Przedstawiono działanie każdej z metod na przykładzie ładowania akumulatora samochodowego. Porównanie Teorii Luk Informacyjnych i arytmetyki 
RDM nie tylko umożliwia głębsze poznanie tych metod, ale również sugeruje pewne szersze spojrzenie na rozwiązywanie problemów w warunkach 
niepewności. (Podejmowanie decyzji w warunkach niepewności z wykorzystaniem Teorii Luk Informacyjnych i nowej wielowymiarowej 
arytmetyki interwałowej RDM). 
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Introduction 

Decision-making under uncertainty is the process of 
drawing conclusions from limited information or conjecture. 
Uncertainty problem considered in the paper is of non-
probabilistic nature. It means, there is no information on 
probabilities and there are not any probability distributions. 
Along with the development of science and technology, our 
understanding of uncertainty has been gradually deepened 
and the research concerning it has reached at a new height. 
Of course it is still extremely difficult to predict something 
precisely, but available methods and tools try to give us 
alternative as good as possible. Among these methods and 
theories we can mention: fuzzy mathematics by L.A. Zadeh 
(1960s) [1], interval arithmetic by R.E. Moore (1960s) [2], 
grey systems theory by J. Deng (1980s) [3,4], rough set 
theory by Z. Pawlak (1980s) [5], uncertainty mathematics by 
H. Bandemer (2005) [6], etc. All these works represent 
some of the most important efforts in the research of 
dealing with uncertainty. However, many scientists still try to 
improve the results therefore they introduce and suggest 
new methods, and two of them are presented in this paper. 
This study compares possibilities of Info-gap Theory 
developed by Y. Ben-Haim (2001) [7,8] and RDM interval 
arithmetic developed by A. Piegat (2012) [9,10]. (Do not 
confuse RDM-arithmetic with other RDM method – Robust 
Decision Making by Lempert, Popper, Bankes (2003) [11]). 
The two offer an interesting comparison because both 
provide quantitative decision analytic models designed to 
evaluate robust strategies using imprecise and potentially 
contentious information. In Poland Info-Gap Theory is 
investigated by scientific team on Westpomeranian 
University of Technology in Szczecin [12,13,14]. This study 
applies both Info-gap Theory and RDM-arithmetic to one 
test case, using the same models and data, and then 
compares and contrasts the results. 
 

Description of Info-Gap Theory 
Info-Gap Decision Theory is used for supporting model-

based decisions with a lack of information. Info-gaps are 
non-probabilistic and cannot be insured against or modeled 
probabilistically. Examples of common info-gaps include 
uncertainty regarding the shape of a probability distribution, 
the functional form of a relationship between entities, or the 
values of some key parameters. The most important part of 
this methodology are info-gap models of uncertainty. An 
info-gap model is an unbounded family of nested sets that 

share a common structure. A frequently encountered 
example is a family of nested ellipsoids that have the same 
shape [7]. The structure of the sets in an info-gap model 
depends on information about the uncertainty. In general 
terms, the structure of an info-gap model of uncertainty is 
chosen to define the smallest or strictest family of sets 
whose elements are consistent with the prior information.  
A common example of an info-gap model, which can be 
characterized as follows [7,8]: 

(1) ( , ) :| | }, 0U u u u u        

Here, u denotes the best estimate of an uncertain 
function u , while the fractional error from this estimate, , 

is unknown. Info-Gap Theory assumes that u~ represents a 
poor guess at the true values of the parameters. At any 
level of uncertainty  , the set ( , )U u   contains all 

functions u  whose fractional deviation from u~  is no 
greater than   [15]. Uncertain variations may be either 
adverse or favorable. Adversity entails the possibility of 
failure. A robustness function expresses the greatest level 
of uncertainty at which failure cannot occur. More precisely, 
the robustness function can be expressed as the maximum 
value of the uncertainty parameter   of an info-gap model 
[7]: 
(2) ˆ ( ) max{ :q  min requirements are always satisfied} 

0
ˆ ( ) max { : ( , )}q u U u  


     

Here, q  denotes a vector of decision variables such as 

time of initiation, choice of a model or its parameters, or 
operational options. Equation expresses that robustness of 

q , ˆ ( )q , is the greatest level of uncertainty  , or the 

greatest possible variation, for which specified minimal 

requirements are always satisfied. ˆ ( )q expresses 

robustness — the degree of immunity against errors or 
deviations from ones’ assumptions — so a large value of 
ˆ ( )q is desirable. The robustness function involves 

maximization of the uncertainty, or the range of variation in 
a variable, parameter or model, at which decision q  would 

satisfy the performance at a tolerable level [7]. The 
robustness function specifies the trade-offs associated with 
a policy that one faces in a given situation. 
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Fig. 1. The space of possible values of uncertain variables 
 

The robustness function reflects the pernicious effects of 
uncertainty. To help inform decision makers, Info-gap 
Theory presents visualizations showing robustness for each 
strategy as a function. Typically, uncertainty is plotted on 
the y-axis and target performance values on the x-axis and 
robustness describes the maximum level of uncertainty that 
can be borne while ensuring a given “critical” outcome. Info-
gap theory has been studied or applied in a range of 
applications including engineering, biological conservation, 
theoretical biology, homeland security, economics, project 
management and statistics. In this study it is presented in 
the numerical example of mechanical problem. 
 
Description of RDM-arithmetic 
RDM-arithmetic is a new approach to an interval arithmetic. 
Typical interval arithmetic has many faults that rather are 
known [16], for example the excess width effect problem or 
dependency problem. RDM-arithmetic was found to 
eliminate all these defects. The abbreviation RDM means 
Relative Distance Measure. An information piece in this 
method is given as a variable x , which has a value 

contained in interval [ , ]x x x , where x  is the lower limit 

and x is the upper limit of the interval.  
Thus variable x  can be described with formula [9]: 

(2) [ , ] : ( ), [0,1]x xx x x x x x x                

Variable x  can be interpreted as measure of relative 

distance and is illustrated in Figure 2. 
 
 
 
 
 
 
 
 
 

Fig. 2. Illustration of notion Relative Distance Measure 
 

Let us consider addition of two intervals.  

(3)   [ , ] [ , ] [ , ]a a b b x x                        

Using RDM variables equation (4) can be transformed in 
(5). 

(5)   , ( ) , ( ) ,
a b

a a a b b b x        

   [0,1], [0,1]
a b

                  

Depending on values of variables 
a

  and 
b

  the resulting 

variable x  assumes various values. It should be noted that 

this sum is 3-dimensional: it depends on 2 variables 
a

   

and 
b

 . Table 1 shows values of x  for border values of 

RDM-variables 
a

  and 
b

 .  

 
Table 1. Values of the sum for various border values of RDM-
variables 

a 

b 

0 
0 

0 
1 

1 
0 

1 
1 

x  ( )a b  ( )a b  ( )a b  ( )a b  

 

After projecting the input granule on the functional 
addition surface a 3D-solution granule is achieved. RDM-
arithmetic has the same operations as interval arithmetic, 
but this method is free of interval arithmetic’s defects. More 
details on RDM interval arithmetic can be found in [9,10] 
and on Andrzej Piegat’s web page. 

Full understanding of Info-Gap Theory and RDM-
arithmetic requires training on problem examples. 
Therefore, in the next chapter an interesting problem is 
presented. Charging car battery is an appropriate problem 
to be solved using methods under uncertainty, not only Info-

Gap Theory but RDM-arithmetic as well.  
 
Numerical example 
The automotive service has to charge discharged batteries 
90 [Ah]. According to the employees’ opinion a battery 
charge status is between 10 [Ah] and 20 [Ah] and it is an 
uncertain information. The discharged battery draws a 
charge current of typically 9 [A] to 11 [A]. Simple chargers 
do not regulate the charge current, and the user needs to 
stop the process or lower the charge current to prevent 
excessive gassing of the battery.  
The formula of charging car battery is described: 

(6)                          
0

( )q t q i t      

where: 
0

q = 15 [Ah]  the nominal value of 
0

q  provided by an 

expert; 
0q = 5 [Ah] the average deviation of batteries’ 

charge;  i   = 10 [A] the nominal value of i  provided by an 

expert; 
i

   = 1 [A] the average deviation of the current 

level. 
The question is how long the batteries should be charging 
to the final state q  ranged [85, 90] [Ah]. An important clue 

is the fact that overcharging batteries is more dangerous 
than undercharging. 
This information allows to create  uncertainty model of initial 

charge 
0

q  and charging current i , presented below and 

based on (1): 

(7)           0 0( ) {( , ) : [85,90],U q i q i t      

0
| 15 | | 10 |

, }, 0
5 1

q i
  

 
    

where   is the horizon of uncertainty. 

The exact values of initial charge 0q  and charging current 

i  are unknown, so there is no possibility to determine time 
t. However, Info-Gap Theory allows to determine it so 
accurately, safely and sensibly as possible within 
incomplete of knowledge. 
 

The robustness function  
The robustness function assesses the greatest tolerable 
horizon of uncertainty. The robustness function is based on 
a satisficing performance requirement. The info-gap 
robustness model in this case is as follows: 

(8)              
0 0

0 0

ˆ ( ) max { : [85, 90],

( , ) ( , ), ( , )}

t q i t

q i U u u q i

 




   

     
 

This function is given an uncertainty model and a minimum 
level of desired outcome. The minimum level of final charge 
q  is 85 [Ah]. 

(9)      0q q i t      → (15 5 ) (10 )q t        
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min 85 (15 5 ) (10 )q q t         , ̂ 10 70

5

t

t

 


 

The horizon of uncertainty ̂  informs us how much may 

fall 0q  and i  below their nominal value to secure the 

critical minimal charge of battery. The maximum level of 
final charge q  is 91 [Ah]. 

max 91 (15 5 ) (10 )q q t         , ̂ 76 10

5

t

t

 


 

 
 
 
  
 
 
 
 
 
 
 
 
Fig. 3a. The robustness function of time t  in a case of 
undercharging  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3b. The robustness function of time t in a case of overcharging 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. The final robustness function of time t  and i  

(10)       
10 70

5

t

t

 


=

76 10

5

t

t

 

  
     →   7, 3t                

However, overcharging batteries is more risky than 
undercharging because it can damage car battery and this 
information should be taken into account. The final decision 
is implemented in Figure 5. 

This 2-dimensional graph shows the sense of the 
dangers present in the charging process. If at the same 

time both the state 0q < 14,2 [Ah] and i  < 9,84 [A], it is 

certain that battery can be undercharged and if 0q > 16,5 

[Ah] and i  > 10,33 [A] than it can be overcharged. 
 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 5. The full space of uncertain variables 0q  resolving a 

problem 
 

The same problem can be solved using RDM method. 
Maintaining all the signs associated with this method, the 
formula of charging car battery takes form (11). 

Initial charge - 
0

[10; 20]q   [Ah]    

Charging current - [9;11]i  [A] 

(11)                           [10; 20] [9;11] [85;91]t     
 

Upper t and lower t  time of charging should be found. The 

first step is an inaccurate conventional solution delivered by 
Moore’s arithmetic [2]:                                              

[10; 20] [9;11] [ ; ] [85;91]t t    

10 9 85t       →     
75

8, 333
9

t    

20 11 91t       →     
71

6, 455
11

t    

[8, 333; 6, 455]t   

The solution is absurd because tt  . Moore’s interval 

arithmetic is not able to solve this problem, therefore RDM-
arithmetic [9] will be applied.  
In equation (11) particular intervals are models of 

approximately known values of 0q , i , t  and q . The model 

of interval type 0 0[ , ]q q used by Moore’s arithmetic defines 

only the outer limits of the interval without any information 
about interior. RDM interval arithmetic introduces internal 
variables , [0,1]   which concern also interior. 

Formulas (12) show the interval models in terms of RDM 
arithmetic. 

  ],[ 00 qq :  
00 0 0 0( )qq q q q   ,

0
[0,1]q   

(12)    ]20;10[ :  
00 10 10 qq    ,

0
[0,1]q   

      ],[ ii :    ( )ii i i i   , [0,1]i    

          ]11;9[ :  9 2 ii    , [0,1]i   

The new interval models express the fact that in the case of 

a particular car battery it occurs only one value of 0q , i , q , 

not the set of values of these variables. 

Thus, equation (9) tiqq  0   can be formulated in this 

form (13): 



74                                                                                 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 8/2013 

(13)     
0

(10 10 ) (9 2 ) ,q i t q        

   
0

[0,1]
q

  , [0,1]
i

     

It should be pointed that in equation (9) q  (final state) and 

t  (charging time) were variables and 0q  and i  were 

constants. It was linear 2-dimensional model. Using RDM 
arithmetic nonlinear 4-dimensional model (13) is received, 

where
0q , i , t  and q  are variables. A significant fact is 

that each inconstant parameter increases dimensionality of 
model by 1 and increases the degree of non-linearity. Thus 
solving problems with uncertainty is more difficult than 
solving problems without uncertain parameters. Charging 
time t  has to be chosen fulfilling minimum (14) and 
maximum (15) inequalities. 

(14) 
0

(10 10 ) (9 2 ) 85,q i t        

(15) 
0

(10 10 ) (9 2 ) 91,q i t        

   ]1,0[
0
q , ]1,0[i  

Taking into account (14) and (15) minimum time mint  and 

maximum time maxt  of charging car battery can be 

calculated. 

(16)   0

min

75 10

9 2

q

i

t




 


 
 ,   

(17)  0

max

81 10

9 2

q

i

t




 


 
, 

0

[0,1]
q

  , [0,1]
i

   

As shown, mint and maxt  are functions of two variables:  

0
min

( , )
q i

t f    and 
0

max
( , )

q i
t f   . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 6. The location of undercharging bound 
0

( , )
q i

t f     

and overcharging bound 
0

( , )
q i

t f    and the nominal 

charging line in the car battery’s state space 
 

The bounds of 
mint  and 

maxt  are defined by equations 

(16) and (17) and they determine information granule, which 

is a space of acceptable status for charging car battery. The 
states which are under or over this information granule lead 
to undercharging or overcharging car battery. It is shown on 
Figure 6. A red vertical line is called nominal charging line 
and it applies to the most common charging car battery 

status defined by two nominal values 0
~q  and i

~
 (18).  

(18)     0 15q  [Ah], 
0

0,5q   10i  [A],   0,5i              

The aim of this research is to determine nominal 

charging time t~ , which  will be well matched to other 

nominal variables 0
~q and i

~
 (18). Generally speaking, time 

t  for any charging status ),( 0 iq should satisfy the 

following condition: 

(19) [],[],[ maxmin  ttttt 0
75 10

9 2

q

i





 

 
, 0

81 10

9 2

q

i





 

 
], 

0
[0,1]q  , [0,1]i                    

The condition (19) is written in a conventional interval 
arithmetic way. Using RDM arithmetic, the value of charging 

time can be noted with variable t  in the following form: 

(20)   ( )tt t t t    0
75 10

9 2

q

i





 

 
+ (t 0

81 10

9 2

q

i





 

 
-

0
75 10

)
9 2

q

i





 


 
0

75 6 10

9 2

t q

i

 



   

 
 

0
[0,1]q  , [0,1]i  , [0,1]t         

This interval model of charging time is not defined by 2 
boundary values like in Moore’s arithmetic but by 2 
boundary functions 

0
( , )q it f    and 

0
( , )q it f   . 

Inserting values (
0q = 0,5, i  = 0,5) for nominal charging 

status to equations (16) and (17), the minimum and 
maximum time can be calculated.  Thus, the nominal time 

t~  which is matched to 0
~q = 15 [Ah] and i

~
 = 10 [A] should 

satisfy the following condition: 

(21)       [ , ] [7, 0; 7, 6]t tt                   

In RDM arithmetic an interval (21) takes the form: 

(22)       ( ) 7, 0 0, 6t tt t t t       , [0,1]t        

The value t means a distance of nominal charging state 
from the undercharging boundary. 

If it assumes that 1

6
t  , then t = 7,1 [h] and a nominal 

point will be too close to undercharging boundary, which is 
shown on Figure 7.  
In the case that a real charging state is totally different from 

the nominal state ( 0
~q = 15, i

~
= 10) there would be 

considerable risk of undercharging this car battery. 

Assuming a nominal charging time t~ = 7,3 h, which is a 

mean of acceptable range [7, 0;7, 6]t  , where t = 0,5 

thus the distance of nominal charging state ( 0
~q = 15, i

~
= 

10) from the undercharging boundary ( 85q   [Ah]) and 

overcharging boundary ( 91q   [Ah]) is the same (see Fig. 

8.). 
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Figure 7. The space of correct and incorrect states of the car 
battery charging process for charging time t = 7,1  h. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. The space of correct and incorrect states of the car 

battery charging process for charging time t = 7,3 [h] and t = 0,5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. The position of nominal charging state for charging time 

t = 7,27 [h] and 
t

 = 0,45.  

 

It should be noted that overcharging car battery is more 
dangerous than undercharging it.  
Hence, the distance from the overcharging boundary 
q should be greater than from the undercharging 

boundary q . Suppose that an expert defined the value 

of t , and it is 0,45. It means that the value of relative 

distance of nominal charging state from the undercharging 
boundary should be smaller by 0,1 from the overcharging 

boundary (1- t = 0,55). Figure 9. shows the position of 

nominal charging state to undercharging and overcharging 

boundaries for t =0,45. 

The decision on the appropriate value of 
t

  is specific to a 

particular expert and depends on its risk assessment 
 
Comparison of Info-Gap Theory and RDM interval 
arithmetic  

Info-gap Theory in its original form presented in [7] is a 
very interesting and inventive method for decision under 
uncertainty. It does not require to establish any probability 
density distributions for the variables of which we have very 
little information and which are important for solving the 
problem. This theory is based on the measurement of the 
distance from the robustness representing the unfavorable 
state of the object and the distance from opportuneness 
representing a very favorable state of the object. However, 
this method examines the issues in simplified way, which is 
criticized by some scientists, eg [18]. Firstly, Info-gap theory 
analyzes the problem rather locally and around the nominal 
state of the problem, which is shown for charging car 
battery in Figure 6., where a local area was marked by a 
circle. Whereas RDM interval arithmetic can detect a full 
global space of possible solutions (granules of solutions), 
which may also contain other very favorable local solutions 
to the problem. In Figure 6. a global granule of solutions is a 
space named “correct charging space”. Another drawback 
of Info-gap theory is to assign one and the same robustness 
variable   and opportuneness variable   for all uncertain 

parameters of the problem. The result is that the theory 
takes the feature of MAX-MIN method, where the selection 
of the best decision is made by measuring the distance 
between the worst and the best solution to the problem. 
However, in many decision making problems it is necessary 
to consider a distance from continuous boundaries rather 
than 2 decision points. This situation requires the 
improvement of Info-gap theory, which the basic idea is 
very reasonable. This possibility gives RDM interval 
arithmetic, as it is shown in the article on the example of 
charging car battery. Using this arithmetic is quite simple 
and it can take the form of algorithm given below: 
Step 1: Determine mathematically the variables and 
constraints in the problem. 
Step 2: Specify the nominal state of the object in the 
problem.                                                             
Step 3: Enter the nominal state of the object to the 
description of the problem and specify the best value or 
range of values of the decision variable for this state. 

Conclusions 
This approach allows one to manage uncertainty by 
choosing a policy that delivers an acceptable performance 
for a known range of parameter outcomes. RDM-arithmetic 
is not a competitor in terms of the Info-Gap Theory, but both 
methods can often be used in parallel. These two theories 
together can better support decision making than only one 
of them. The problem of decision making is not one-
dimensional and reducing it to one dimension is generally 
worse. The most important thing is the fact that Info-Gap 
Theory utilizes effectively the most probable values, but 
RDM analyzes the boundary of values: pessimistic and 
optimistic. The best solution is to create a new decision 
making theory using these three assessments together.  
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