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A numerical method for current density determination 
in three-phase bus-bars of rectangular cross section 

 
 

Abstract. This paper presents a new numerical computation method for determining the current distributions in high-current three-phase 
busducts of rectangular busbars. This method is based on the integral equation method and the Partial Element Equivalent Circuit (PEEC) 
method. It takes into account the skin effect and proximity effects, as well as the complete electromagnetic coupling between phase bars 
and the neutral bar.  In particular, the current densities in rectangular busbars of  unshielded three-phase systems with rectangular phase 
and neutral busbars, and the use of the method are described. Finally, two applications to three-phase unshielded systems busbars are 
presented. 
 
Streszczenie. W artykule przedstawiono nową numeryczna metodę obliczania rozkładu gęstości prądu w szynoprzewodach prostokątnych 
trójfazowego toru wielkoprądowego. Metoda wykorzystuje równie całkowe i oparta jest na teorii obwodowych cząstkowych elementów 
zastępczych. Uwzględnia ona zjawisko naskórkowości i zbliżenia oraz całkowite sprzężenie magnetyczne miedzy szynoprzewodami 
fazowymi i szynoprzewodem neutralnym. W szczególności opisano rozkład gęstości prądu i zastosowanie tej metody dla przypadku 
trójfazowego toru wielkoprądowego o prostokątnych szynoprzewodach fazowych i prostokątnym szynoprzewodzie neutralnym. Rozkłady 
gęstości prądów wyznaczono dla dwóch przykładów układów trójfazowych z szynoprzewodami prostokątnymi.(Numeryczna metoda 
obliczania gęstości prądu w trójfazowym układzie szynoprzewodów prostokątnych.)  
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Introduction 

High-current air-insulated bus duct systems with 
rectangular busbars are often used in power generation and 
substation, due to their easy installation and utilization. The 
increasing power level of these plants requires an increase 
in the current-carrying capacity of the distribution lines 
(usually 1-10 kA). The medium voltage level of the 
generator terminals is 10-30 kV. The construction of busbar 
is usually carried out by putting together several flat 
rectangular bars in parallel for each phase in order to 
reduce thermal stresses. The spacing between the bars is 
made equal to their thickness for practical reasons, and this 
leads to skin and proximity effects. The bus ducts usually 
consist of aluminum or copper busbars [1, 2]. A typical 
cross-section of the unshielded three-phase high-current 
bus duct is depicted in Fig. 1. 

 
 
 
 
 
 
 
 
 
 

Fig. 1. Three phase high-current bus duct of rectangular cross-
section with two busbars per phase and one neutral busbar 

 
The distribution of AC current density in the cross-

section of each busbar of a system of busbars is generally 
non-uniform, and known as “skin effect”. It can be found 
exactly only for simple geometries like round wires and 
tubes [3-7], or very long and thin rectangular busbars (tapes 
or strips) [7-10]. For more complex cross-sections, 
analytical-numerical and numerical methods must be used 
to find the current distributions, which is further modified by 
the proximity of other conductors – “proximity effect” [11-
17]. Both the skin effect and proximity effect will generally 
cause the current distribution is not uniform over the cross 
section of a busbar. Since the current distributions influence 

the AC inductances and resistances of the busbars, the 
voltage regulation and power loss of a system is affected by 
the design of its current busses. The development of 
efficient numerical methods for the solutions of these 
problems is therefore of interest. 

 
Integral equation 

The integral formulation is well known [3, 4, 18-24] and 
is derived by assuming sinusoidal steady-state, and then 
applying the magnetoquasistatic assumption that the 
displacement current, jωεE, is negligible. In the case of N 
straight parallel conductors with length l, conductivity σi (i = 
1, 2,…, N), cross section Si with sinusoidal current input 
function with angular frequency ω and complex value Ii 
flowing in the direction of Oz, the complex current density 
has one component along the Oz axis, that is Ji(X) = azJi(X). 
The component Ji(X) is independent of variable z, and in a 
general case, depends on the self current and on the 
currents in the neighboring conductors (the skin and 
proximity effects). Then also the vector magnetic potential 
A(X) = azA(X), the electric field E(X) = azE(X), and the ideal 
conductor constitutive relation is Ji(X) = σiEi(X). Then, the 
integral equation for ith conductor is given as follows 
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where X = (x1, y1, z1) is the observation point, Y = (x2, y2, z2), is 
the source point, ρXY = |X – Y| is the distance between the 
observation point X and the source point Y (Fig.2), vi and vj 
are the volume of the ith and the jth conductor, respectively, 
ui is the unit voltage drop (in V·m−1) across the ith conductor, 
and i, j = 1, 2,…, N. 

Then, by simultaneously solving Eq. (1) with the current 
conservation, ·J(X) = 0, the conductor current densities 
and the unit voltage drops can be computed. In the case 
shown in Fig. 1, the following integral equation can be 
written for arbitrary point X in each busbar and the 
enclosure: 
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Fig. 2. The ith and jth conductors of a system of N parallel busbars 
of rectangular cross section 
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where:  
- Nc is the number of phases plus the neutral plus the 

enclosure, and i, j = 1, 2,…, Nc (Nc = 5), 
- Nj is the number of busbars belonging to one phase or the 

neutral or the number of rectangular plates of which the 
enclosure consists (usually 4), and k, l = 1, 2,…, Nj. 

 
Multiconductor model of the busbars 

In this model, each phase, neutral busbars and each 
plate of enclosure is divided in several thin subbars [2, 25-
30], as shown in Fig. 3.  

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. The kth bar of the ith phase divided into Ni,k = Nx
(i,k)Ny

(i,k) subbars 
 
This division of the kth bar of the ith phase or the neutral 

into subbars is carried out separately for the horizontal (Ox 
axis) and vertical (Oy axis) direction of its cross-sectional 
area. Hence, subbars are generally rectangular in the 
cross-section, with the width Δa and thickness Δb, defined 
by the following relations: 
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where a and b are the width and the thickness of the 
busbar, respectively, Nx

(i,k) and Ny
(i,k) are the number of 

divisions along the busbar width and thickness respectively. 
Thus, the total number of subbars of the kth bar of the ith 
phase is Ni,k = Nx

(i,k)Ny
(i,k), and they are numbered by m = 1, 2, 

…, Ni,k. For the lth bar of the jth phase or the neutral we have 
the total number of subbars Nj,l = Nx

(j,l)Ny
(j,l) numbered by n = 

1, 2, …, Nj,l. All subbars have the same length l. 
If the area Si

(m
,k

) = Δa·Δb of the mth subbar is very small 
and the diagonal [(Δa)2+(Δb)2]1/2 of it is not greater than skin 

depth, we can neglect the skin effect and assume that the 
complex current density can be considered uniform, i.e. 
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where I i
(m
,k

) is the complex current flowing through the mth 

subbar. 
 

Busbar impedances 
For the mth subbar or plate the integral equation (2) can 

be written as 
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where vj
(n
,l

) is the volume of the nth subbar or plate of the lth 

bar or plate of the jth phase or the neutral or the enclosure. 
Now, we can divide Eq. (5) by the area Si

(m
,k

) and 
integrate over the volume vi

(m
,k

) of the mth subbar or plate, 
obtaining the following equation: 
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where Ui is the voltage drop across of all subbars of the ith 

phase or the neutral or the shield (they are connected in 
parallel), and the resistance of the mth subbar is defined by 
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and the self or the mutual inductance is expressed as 
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The exact closed formulae for the self and the mutual 
inductance of rectangular conductor of any dimensions, 
including any length, are given in [19] and [20] respectively. 
Not only do not we use the geometric mean distance here, 
we do not use the formula for mutual inductance between 
two filament wires as well. 

The set of equations like as (6), written for all subbars, 
forms the following general system of complex linear 
algebraic equations 

(9) IZU ˆˆˆ  , 

where Û  and Î  are column vectors of the voltages and 

currents of all subbars, respectively, and Ẑ  is the 
symmetric matrix of self and mutual impedances (the 
impedance matrix) of all subbars, the elements of which are 
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Then, we can find the admittance matrix Ŷ , which is the 

inverse matrix of the impedance matrix Ẑ , and it is 
expressed as 
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and has a similar structure as Ẑ . Then it is possible to 
determine the current of the mth subbar of the kth bar of the 
ith phase or the neutral as 
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The total current of the ith phase or the neutral is 

(13)  
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By inserting Eq. (12) into Eq. (13), we obtain 
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From the admittance matrix with elements given by Eq. 
(15), we can determine the impedance matrix of a shielded 
three-phase system busbars with the neutral busbar as 
follows 
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Since each Zi,j is obtained from a matrix whose elements 
are comprised of information related only to construction 
and material, its value is not affected by the busbar current. 
In spite of that the skin and proximity effects are taken into 
consideration. 

 
Current densities 

If we assume all sinusoidal phase currents to be given, 
we can write that the neutral current IN = I1 + I2 + I3 and, 
from Eq. (14), find all voltages across phase and neutral 
busbars as 
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Thus, from that and Eq. (12) it is possible to determine all 
currents in subbars, and finally calculate, according to Eq. 
(4), current densities in them. These densities differ across 
the cross sections of the busbars due to the skin and 
proximity effects.  

 
Numerical examples 

The first numerical example selected for this paper 
features a three-phase system of rectangular busbars with 
one neutral busbar, whose cross-section is depicted in 
Fig.1. According to the notations applied in this figure, the 
following geometry of the busbars has been selected: the 
dimensions of the phase rectangular busbars and the 
neutral busbars are a = 60 mm, b = b1 = 5 mm, 
d = d1 = 90 mm. The phase busbars and the neutral are 
made of copper, which has the electric conductivity of 
σ = 56 MS·m−1. The frequency is 50 Hz. All phases have 
two busbars per phase − N1 = N2 = N3 = 2, and the neutral 
has one busbar − N4 = 1. The length of the busbar system is 
assumed l = 10 m. In the numerical procedure, each phase 

busbar is divided into Nx
(i,k) = 30 and Ny

(i,k) = 5, which gives 
150 subbars for each busbar. Hence, all three phases and 
the neutral busbars have 1050 subbars in total. With the 
chosen division, each rectangular subbar has dimensions of 
2 × 1 mm. This allows for the fact that the current density is 
uniform on the surface of the subbars. During the 
simulation, three balanced currents with busbar-rated 
values I1 = 1 kA are imposed in phases as shown 
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As a first result, the current density comparison along x 
axis, practically the same along y axis at x = const, in each 
busbar is shown in Fig. 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Current density along line s (see Fig. 1) in busbars of the 
high-current three-phase busducts with two busbars per phase and 
one neutral bar in the case of three balanced current 

 
The case of three unbalanced currents 
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has been also investigated – Fig. 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Current density along line s (see Fig. 1) in busbars of the 
high-current three-phase busducts with two busbars per phase and 
one neutral bar in the case of three unbalanced current 

 
The second configuration of a three phase busbar 

system, the current density of which are investigated, is 
shown in Fig. 6. It has only one busbar per phase and 
neutral - N1 = N2 = N3 = N4 = 1. The length of the busbar 
system and the busbar division are as in the previous 
example (150 subbars for each busbar). Hence, all three 
phase and the neutral busbars have 600 total subbars. With 
the chosen division, each rectangular subbar has still 
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dimensions of 2 × 1 mm. During the simulation, three 
balanced – Eq. (18) − and three unbalanced – Eq. (19) − 
currents with busbar-rated values Ieff = 1 kA are imposed in 
phases, and the current densities comparison along x axis, 
practically the same along y axis at x = const., in each 
busbar are shown in Fig. 7 and Fig. 8, respectively. 

 
 
 
 
 
 
 
 
 

Fig. 6. Three phase high-current bus duct of rectangular cross-
section with one busbar per phase and one neutral busbar 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Current density along line s (see Fig. 6) in busbars of the 
high-current three-phase busducts with one busbar per phase and 
one neutral bar in the case of three balanced current 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Current density along line s (see Fig. 6) in busbars of the 
Fig. 8. Current density along line s (see Fig. 6) in busbars of the 
high-current three-phase busducts with one busbar per phase and 
one neutral bar in the case of three unbalanced current 

 
Conclusions 

A novel approach to the solution of current density 
distribution in the high-current bus ducts of rectangular 
cross-section has been presented in this paper. The 
proposed approached combines the Partial Element 
Equivalent Circuit (PEEC) method with the exact closed 
formulae for AC self and mutual inductances of rectangular 
conductors of any dimensions, which allows the precise 
accounting for the skin and proximity effects. Complete 
electromagnetic coupling between the phase busbars and 
the neutral busbar is taken into account as well.  

As Figures 4 and 5 as well as 7 and 8 show, both the 
skin effect and proximity effect will generally cause the 
current density in the busbars has a strongly non-uniform 

distribution across each busbar. Moreover, the distributions 
are different in individual busbars. Knowing the current 
distribution is important in evaluating the electrodynamic 
force on each busbar. It is possible also to evaluate the 
temperature of the different components of the busbar 
system.  

The proposed method allows us to calculate the current 
density distribution in a set of parallel rectangular busbars 
of any constant cross-sections including any length. 
However, the current density vector is assumed to have 
only a z-component independent on z, which means that the 
fringing is neglected, and therefore the length should be 
large enough. The basic difference between the proposed 
model and existing models is that it uses expressions for 
inductances for subbars of finite dimensions. To obtain 
more accurate results, the fringing must be taken into 
account, but it requires a 3D model, which is much more 
time and memory consuming.  

The validity of our numerical method has been 
successfully compared with a classical finite element 
method (FEM) such a FLUX2D software in the case of 2D 
busbar systems, particularly for the long busbars. 

The proposed model is strikingly simple, and from a 
logical stand-point can be applied in general to conductors 
of any constant cross-section, whereas many conventional 
methods, being much more complicated, often require a 
greater or lesser degree of symmetry. From the practical 
stand-point of the calculations involved, the model requires 
the solution of a rather large set of linear simultaneous 
equations. However, this solution is well within the range of 
the ability of existing computers, even those slightly 
overage.  
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