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The method of analysis of the stationary thermal field in 
insulation of a lead with the variable heat transfer coefficient 

 
 

Abstract. In the paper the stationary thermal field was analyzed in a ring of insulation of the lead with a variable coefficient of the heat transfer on 
the external perimeter. Different functions were considered modelling the total heat transfer coefficient from the surface of insulation. The analytical 
computer aided method was developed for solution of the two-dimensional elliptical problem. Eigenfunctions of the problem were determined by the 
separation of variables. The unknown coefficients of eigenfunctions and the constants were computed numerically solving the respective system of 
algebraic equations. The obtained results were verified by means of the finite element method.  
 
Streszczenie. W pracy analizowano stacjonarne pole termiczne w pierścieniu izolacji przewodu ze zmiennym współczynnikiem przejmowania ciepła 
na zewnętrznym obwodzie. Uwzględniono różne funkcje modelujące całkowity współczynnik przejmowania ciepła z powierzchni izolacji. Do 
rozwiązania dwuwymiarowego zagadnienia eliptycznego opracowano metodę analityczną wspomaganą komputerową. Funkcje własne zagadnienia 
określono za pomocą separacji zmiennych. Nieznane współczynniki funkcji własnych oraz stałe obliczono rozwiązując numerycznie odpowiedni 
układ równań algebraicznych. Otrzymane wyniki zweryfikowano za pomocą metody elementów skończonych. (Metoda analizy stacjonarnego pola 
termicznego w izolacji przewodu ze zmiennym współczynnikiem przejmowania ciepła). 
 
Keywords: insulation of the lead, stationary thermal field, analytical methods, computer aid. 
Słowa kluczowe: izolacja przewodu, stacjonarne pole termiczne, metody analityczne, wspomaganie komputerowe. 
 
 
Introduction 
 In recent works [1],[2] of the authors the transient 
thermal field in insulation of a DC lead was analyzed in 
terms of the convective heat transfer. A constant value of 
the heat transfer coefficient on the insulation perimeter was 
assumed with that. However, results of numerous 
investigations (e.g. [4], [13]) show, that the mentioned 
coefficient depends on location on the perimeter of 
cyllindrical solids. That is because above the top point of 
the system (Fig. 1) some kind of the heat stream is formed, 
which results in the worse heat transfer in the above and 
the better one down below. 
 The authors took the mentioned phenomenon into 
account in papers [3], [5]. In [3] the transient thermal field of 
a DC cable was computed by the numerical way with the 
variable heat transfer coefficient on the cable perimeter. In 
[5], in turn, the analytical method of determination of the 
stationary thermal field of a bare lead was presented, with 
the variable heat transfer coefficient, as well. In the present 
paper the subject-matter of the analytical method was 
extended taking into considerations a ring shaped 
configuration instead of the circular one [5]. It enabled the 
stationary thermal field analysis in a layer of insulation of 
the lead. The variable heat transfer coefficient was 
assumed on the perimeter, similar to [3], [5]. It should be 
mentioned about many advantages of the analytical 
methods, which results are described by formulas. They 
provide a lot of information making more easy a discussion 
on the influence of particular parameters and the physical 
interpretation of the obtained results, as well. In the 
proposed method eigenfunctions of the solution were 
determined by the analytical way. Unknown coefficients of 
those functions and constants were obtained solving the 
respective system of algebraic equations. 
 

Boundary problem of the modeled thermal field 
 The subject of investigations is a layer of insulation of 
the lead (Fig. 1). It was assumed, that the whole system is 
located in air of the temperature T0 and it is shielded from 
direct solar radiation. Besides, constant and averaged 
material parameters were assumed in analysis of the 
considered problem. 
 A two-dimensional equation of the heat conduction was 
obtained [6], [7] assuming that a length of the system (layer 
of insulation) is considerably greater than its diameter and 
assuming variable cooling conditions on the perimeter 
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T(r,) - stationary temperature field, R1 - internal radius of 
insulation, R2 - external radius of insulation, r - radial 
coordinate,  - angular coordinate. 
 

 
Fig. 1 Model of insulation with the boundary layer 
 

The external surface of insulation (r=R2) gives up the 
heat by means of a natural convection and radiation. The 
mentioned heat transfer is described by Hankel’s boundary 
condition [4]
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where: - thermal conductivity.  
The total heat transfer coefficient () occurred in 

equation (2) depends on location of the considered point on 
the perimeter of insulation. Insulation of the lead is strictly 
adherent to a core. The thermal conductivity of the last one 
is more than 2000 times larger than the one of insulation. 
Therefore a uniform distribution of the thermal field can be 
assumed in the whole region r≤R1 of a core (copper or 
aluminium). From the above premises it follows, that 
constant value Tc of the temperature on the internal surface 
of insulation (r=R1)  can be assumed. It is described by 
Dirichlet’s boundary condition 
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(3)     cTRT ,1    for   20  . 

Value Tc in (3) obviously depends on the current intensity in a 
core of the lead and it cannot exceed the maximum 
sustained temperature for insulation.  
 Relations (1-3) determine the elliptical boundary problem 
of the thermal field in insulation. 
  

Solution of the boundary problem 
 The homogeneous two-dimensional partial equation (1) 
of the heat conduction was solved by the separation of 
variables method [8],[9]. After elimination of singular 
solutions and non-physical ones (non-periodical with 
respect to the angular coordinate) it was obtained: 
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A,B - constants, Cn,Dn,En,Fn - coefficients of eigenfunctions. 
Then the number of constants and coefficients of solution 
(4) was reduced taking advantage of Dirichlet’s boundary 
condition (3). For example constant B was eliminated in the 
result of substitution (4) to (3) and integration of the 
obtained relation with respect to the angular coordinate  
within interval <0,2>. In turn the number of unknown 
coefficients in (4) was reduced this way, that (4) was 
substituted to (3) once again. Then the obtained relation 
was multiplied by cos(m) and integrated both sides with 
respect to the angular coordinate  within interval <0,2>.  
Advantage of the functions {cos(m), sin(m)} ortogonality 
was taken into account with that. In the result it was 
obtained: 
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In order to determine Gn,Hn and constant A the summation of 
series (5) was limited to a finite number of L terms and (5) 
was substituted to Henkel’s boundary condition (2). In the 
result it was obtained:  
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Such obtained relation (6) was multiplied by cos(m)  
and integrated both sides with respect to the angular 
coordinate  within interval <0,2>. This way equation (7a) 
was obtained for m=1,2…L. A successive equation was 
obtained multiplying (6) by sin(m) and integrating both 
sides with respect to the same coordinate and within the 
same interval as in the above. In the result one comes to 
equation (7b) for m=1,2…L. Last equation (7c) was obtained 
in the result of integration of relation (6) both sides with 
respect to the angular coordinate  within interval <0,2>.  
In computation of some integrals present in (7a,b) 
advantage of the functions {cos(m), sin(m)} ortogonality 
was taken within interval <0,2>. In the result relations (7a-
c) determine the system of 2L+1 equations with respect to 
Gn,Hn,A 
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(7a,b,c), where: 
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The computation of integrals (8-10) for given ()  leads 
to determination of unknown coefficients Gn,Hn  and 
constant A from the system of equations (7). This way the 
lacking elements of solution (5) are determined. The results 
of computations of integrals (8-10) for three different 
functions ()  were placed in the appendix. 
 

Computational examples 
 The computer programme was developed based on 
Mathematica 6.0 package [10]. The program computes the 
temperature field distribution by means of the presented 
method. The layer of PVC insulation heated up to maximum 
sustained temperature on the critical surface r=R1 by a core 
of the lead (with cross section 300 mm2) was considered as 
an example. The following data were assumed:  
R1=0,0117m, R2=0,0141m, =0,017W/(mK), T0=25oC, Tc=70oC, 
L=100. Besides three different functions () were assumed 
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modeling the total heat transfer coefficient from insulation. 
The first approximation 1()  [3] relatively accurate models 
influence of the boundary layer,  
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The above formulas consider the diameter of a lead and 
proper criterial numbers, as well. 
In the second approximation 2() constant values of the 
coefficient on the top and on the bottom half of insulation 
were assumed 
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The above relation models better give up of the heat by the 
lower surface of insulation than by the upper one. The third 
case of the same heat exchange on the surface r=R2 was 
considered assuming 3()=const=14W/(m2K).  
The field distributions for 1(),2(),3()=const were 
presented in diagrams. The temperature distribution on the 
external perimeter of insulation (r=R2) in the function of 
angular coordinate was shown in Fig. 2. Temperature 

distributions on the circles r=const. for 21, RRr   have a 

very similar shape and they are mutually shifted along the 
temperature axis. Fig. 3 and Fig. 4 illustrate the temperature 
distributions in the function of radial coordinate with 
constant values of angular coordinates for 1() and 2(), 
respectively. On the mentioned diagrams (Fig. 3 and Fig. 4) 
the field distributions for 3()=const were plotted for a 
comparison. 

 
Fig. 2 Temperature distributions on the perimeter of insulation 
(r=R2) in the function of angular coordinate for 1(),2(),3() 
 
 The developed method was verified, as well. For this 
purpose the obtained results were compared with the 
computations made by means of the finite element method 
FE [11]. It is a base of the professional program NISA v.16 
[12]. A two-dimensional model of insulation was 
approximated by the mesh consisting of 800 quadrangular 
elements of 2727 nodes placed in the vertices and in the 
half of sides of the mentioned figures. Relative differences 
of the temperature distributions  
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were illustrated in Fig. 5, where TFE(R2,) - temperature 
distribution obtained by the finite element method, TA(R2,) - 
temperature distribution obtained by the developed method. 

 
Fig.3 Temperature distributions in insulation in the function of radial 
co-ordinate for 1() and 3()=const  for the selected values of 
angular co-ordinate  

 
Fig.4 Temperature distributions in insulation in the function of radial 
co-ordinate for 2() and 3()=const  for the selected values of 
angular co-ordinate  

 
Fig.5 Relative differences of the temperature distributions on the 
perimeter of insulation (r=R2) in the function of angular co-ordinate 
obtained by the finite element method and by the analytical one 
 

Conclusions 
A) Analyzing distributions in the function of angular co-
ordinate evident differences between the temperature 
values at the top (=/2) and in the bottom point (=3/2) 
are observed for 1() and 2() (Fig. 2). It results from the 
influence of a boundary layer of air created around 
insulation. As it is seen in Fig. 2, with more accurate 
modeling i.e. for 1(), the differences mentioned in the 
above are larger than ones for 2(). For a constant value 
of the heat transfer coefficient 3(), the temperature of 
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surface r=R2 in insulation is uniform  (Fig. 2 for 
3()=const.).  
 Then analyzing the field distributions in the function of 
radial co-ordinate (for constant values of angular co-
ordinates) it is seen, that the temperature of insulation 
decreases for all coefficients of the heat transfer (Fig. 3,4) 
with the radial co-ordinate increase. For 1() and 2() 
inequality T(r,=/2)T(r,=3/2) is satisfied for R1rR2, 
what results from better give up of the heat by the bottom 
part of the system. 
B) Relative differences (13) of the temperature distributions 
computed by the finite element method (FE) and by the 
analytical one (A) are the biggest for the heat transfer 
coefficient 1() (Fig. 5 for r=R2). The absolute maximal 
value is about 0.19%. For the remained coefficients i.e. for 
2() and 3()=const. the above discussed differences are 
smaller. At other points of insulation (R1<r<R2) the 
considered differences are almost the same or less than the 
one shown in Fig. 5. Then the developed method should be 
considered as numerically verified. 
 

Appendix 
A) Results of the computation of integrals (8-10) for the 
heat transfer coefficient 1(): 
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B) Results of the computation of integrals (8-10) for the 
heat transfer coefficient 2(): 
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C) Results of the computation of integrals (8-10) for the 
heat transfer coefficient 3()=const: 
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