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Abstract. The article discussed a mathematical model of the flow of thermal energy from deep rocks to the heat energy recovery system, and 
presented the results of the simulation of the created model. The considered model of the system is an integral part of the production of electricity 
from thermal energy from hot rocks located at great depths. Recovery of the energy in the system is to be effected by means of the heat exchanger 
located in the rocks at great depths. In the article the results of simulation were presented in Matlab-Simulink. The maximum power of the system 
and  the duration of the transition processes were estimated using the simulation model. 

 
Streszczenie. W artykule został omówiony model matematyczny przepływu energii cieplnej z głęboko położonych skał do wymiennika systemu 
odzyskiwania energii oraz przedstawione wyniki symulacji zbudowanego modelu. Rozważany model jest składową częścią systemu wytwarzania 
energii elektrycznej z energii cieplnej gorących skał położonych na dużych głębokościach. Odzyskiwanie energii w tym systemie ma się odbywać 
przy pomocy wymiennika umieszczonego w skałach na dużych głębokościach. W pracy przedstawiono wyniki symulacji systemu w środowisku 
Matlab-simulink. Na podstawie symulacji wyznaczone zostało górne oszacowanie mocy całego systemu, oszacowano czas trwania procesów 
przejściowych. (Model przepływu energii cieplnej do wymiennika systemu odzyskiwania energii z głęboko położonych skał.). 
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Introduction 

The development and functioning of the economy 
requires continuous access to energy. It is estimated that 
about the half of fossil energy resources found on Earth 
have been used up. It is necessary to attract new sources 
of energy, preferably the renewable. 

The heat energy inside the Earth is virtually 
inexhaustible. It is believed that its sources are mainly 
radioactive decay. Currently used exploitation methods of 
the energy are based on the use of water in deep crevices, 
which has a temperature above the 65 Celsius degrees. 

Researchers are studying the possibility of recovering 
heat from deep hot rock impervious to water. These rocks 
can be found at great depths exceeding 5,000 m 
(petrothermal resources). The advantage of this source of 
energy is the high temperature of the rock, which at this 
depth can be as high as 350 Celsius degrees. 

 
The mathematical model 

In this part a mathematical model of energy flow to the 
heat energy conversion system was discussed. The 
mathematical model was developed for simulation in 
MATLAB Simulink. It was assumed that the rock around the 
heat exchanger is homogeneous in every direction. It 
follows that the temperature distribution around the heat 
exchanger does not depend on the direction, and it is 
dependent only on the distance from the heat exchanger. 

(Fig.1) shows the distribution of layers 1,2,...,N of 
energy flow model. In the heat exchanger there is 
temperature T0. It is assumed that the radius RN is the 
boundary above which there is the fixed temperature and it 
equals TN+1. Heat flow between successive layers i = 
1,2,...,N+1, also between a layer 1 and heat exchanger is 
the result from the temperature difference between the 
layers. In the figure it is indicated by QIi energy that flows 
from layer i+1 to layer i and by QOi energy that flows from 
layer i to layer i-1 in time interval ∆t. Rays S0, S1,…,SN, SN+1 
are the radius of a centre of layers, the rays R0, R1, 
R2,…,RN are the dividing radius of layers. 

Capacity and thermal conductivity of the rock material 
was signed by Cw [J/m3·K], Cp [J/m·K·s]. So the heat 
capacity of each layer for i=1, 2,…,N is given by the formula 
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Fig.1. Layers of rocks around the heat exchanger 
 
The thermal conductivity between the layers i+1 and i 

for i=0,1, 2,…,N is given by the formula 
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The energy that flows to the layer i in the time interval 
∆t, for i=1,2,…,N, is given by the formula 
 (3) tTTKQ iiiIi   )( 1 . 

The energy that flows out of the layer i in the time 
interval ∆t, for i=1,2,…,N is given by the formula 
(4) tTTKQ iiiOi   )( 11 . 

The change in internal energy of the layer i=1,2,…,N is 
given by formula 
(5) OiQIiQiCiTiQ  . 

On the basis of (1), (2), The energy that flows to the 
layer i in the time interval ∆t, for i=1,2,…,N, is given by the 
formula 

 (3), (4), (5) i=1,2,…,N the following equation was 
derived 
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Equation (6) is a differential equation of heat balance in 
the layers. 
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Derivation of layers 
the temperature distribution at steady state given in 

article [7] was used in determining the radius. The layer 
thickness was derived in this way that in the steady state of 
the system the temperature difference between the layers 
ri,, i=1,2,…,2N was constant. Rays R0=S0=r0, and 
RN=SN+1=r2N are given. The remaining rays of the model (6) 
were appointed. As a result of the use the temperature 
distribution given for the system in steady state was derived 
recursive relationship for the rays as shown below 
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The rays S0, S1,…,SN., SN+1 of the centre of layers, and 
the rays R1, R2,…,RN of dividing of layers can be 
determined from the equation 
(8) NirSrR iiii ,...,2,1,, 122   . 
 
System power 

The maximum power of the system (6) can be 
calculated from the equation (9). This power is the amount 
of the heat that flows from the first layer to the heat 
exchanger at the time interval ∆t. 
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Taking into account the conductivity of the walls of the 
heat exchanger Cpw [J/m2] the maximum power of the 
system can be determined from the equation 
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After taking heat exchanger resistance it is necessary to 
modify the heat balance equation of the first layer 
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For analysis of the duration of the system at a given 
fixed power Pconst it is also necessary to modify the heat 
balance equation of the first layer 
 (12) t1111  constI PQCTQ . 

Hence, after substituting (1), (2), The energy that 
flows to the layer i in the time interval ∆t, for i=1,2,…,N, is 
given by the formula 

 (3) to (12) obtained heat balance of the first layer 
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If a model with fixed power of equation (6),  (13) for 
power Pconst is substitute the equation (10) this provides to 
the model described by equations (6) and  (11). In the 
model of the fixed set power when maximum power 
calculated from equation  (11) falls below the set point of 
power Pconst then maximum power received through the 
heat exchanger is calculated from the equation  (11). 
 
The simulation of the model in Matlab simulink 

For the purpose of simulation in Matlab Simulink the 
following equations were used (6) for i=2,…,N, and equation  

(11) for the first layer. After turning off the constants Vi, Xi 
the following formulas were received 
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The system of equations  (14),  (15) can be written in 
matrix form 
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The matrices state A, input B, output C, feedforward D, 
and control vector U were determined as follows 
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In the model in the Matlab Simulink environment 
matrices  (20),  (21) were used. An example of Matlab 
Simulink modeling equations of this type can be found in 
[6]. 

The system parameters in the model were assumed: 
density of rock material ρ=2800 [kg/m3], specific heat 
volume of rock λ=790[J/Kg·K], the conductivity of rocks 
C=3.5 to 3.7[J/m·K·s], hence the heat capacity of the rock is 
Cw=λ·ρ=2212000 [J/m3·K]. It was assumed that the time 
interval ∆t is equal to 1 [h], so the thermal conductivity of 
rocks is equal Cp=C·∆t=3.6·60·60=12960[J/m·K·h]. It is 
assumed that the heat exchanger is made of steel with a 
heat conductivity of C=58[J/m·K·s], and the thickness is 
equal 0.02[m], so the coefficient Cpw=(58/0.02)·60·60 
[J/m2·K·h]. The minimum temperature at the surface of the 
heat exchanger at a maximum power consumption is 
423.15[K], the initial temperature of the rocks 600[K]. 
Scheme of the model of the system described by equations, 
(14), (15) in MATLAB Simulink is shown at (Fig.2). 
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Fig.2. Model scheme of heat flow in Matlab Simulink 

 
Simulation of the model (14), (15) at maximum power 

was done. Diagrams of temperature in function of time were 
obtained as shown at (Fig.3). The model assumes 60 
layers, R0=50[m], RN=1000[m]. Layers 1, 2, 4, 8, 16, 32 
have radii: 1 - (50-50.8[m]), 2 - (50.8-51.6[m]), 4 - (52.4-
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53.4[m]), 8 - (56.2-57.2[m]), 16 - (65.6-67.0[m)), 32 - (98.2-
101.3[m)). 
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Fig.3. The course of change in temperature as a function of time in 
the layers 1, 2, 4, 8, 16, 32, model with 60 layers 

 
Simulation of the model was conducted for N=60, 120, 

180 layers. As a result of the simulation waveforms (Fig.4) 
of system power were obtained. The model assumes 
R0=50[m], RN=1000[m]. The dashed line, continuous, dotted 
in the figure corresponds to the models of 60, 120, 180 
layers. 
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Fig.4. The maximum power changes as a function of time, 
simulation 20 days, models of 60, 120, 180 layers 

 
Simulations were run for 50 years for heat exchangers 

with different radii, values of the radii R0=10, 20, 30, 40, 
50[m] were adopted. As the simulation result charts (Fig.5) 
of system power were obtained. On the figure lines of the 
less value of power correspond to the heat exchangers of 
smaller diameter. 
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Fig.5. Mileage changes of maximum power received through 

the exchanger as a function of time, simulation for 50 years 
 
For smaller diameter heat exchangers i.e: 10, 20[m] can 

be assumed that final output power this is the power in 
steady state. The final values for the heat power for 
exchangers of diameter 10, 20, 40, 50, 100 [m] were, 
respectively, 0.0889, 0.1958, 0.3206, 0.4634, 0.6242 [MW]. 
The power in steady state of the system is growing more 
than twice when radius increases twice, which confirms the 
results reported in the article [7]. 

Simulation of the model described by equations (14) and 
(15) at a given fixed output power Pconst was conducted. As 
the simulation result the following chart of system power 
was obtained (Fig.6). The model assumes: heat exchanger 

of radius R0=50[m], simulation time of 15 years, fixed power 
equal to 5, 4, 3, 2, 1 [MW]. 
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Fig.6. Changes in the level of power consumption for a fixed 
maximum power 5, 4, 3, 2, 1 [MW] 

 
For the system with fixed power that is equal to 5, 4, 3, 

2, 1 [MW], the power fall appears after the time respectively 
2400[h]≈3[months], 3900[h]≈5[months], 7400[h] ≈10[month], 
19000[h]≈3[years], 120350[h]≈13[years]. 

Under the adopted assumptions for the heat exchanger 
with a diameter of 50[m], the power available in steady state 
is less than 1[MW]. It is possible to draw higher power in a 
state of transition for example: 1[MW] may be charged for 
more than 13 years. 
 
Summary and Conclusions 

The article discussed a mathematical model of the flow 
of thermal energy from deep rocks that are the source to 
the heat energy recovery system, and presented the results 
of the simulation created model in the Matlab Simulink 
environment. 

The maximum power of the system was estimated for  
the exchangers of various diameters based on the 
simulation model. The maximum time of power taken on a 
given level was also estimated. 

The flow model will be used in the future work to build a 
model of the system of electricity production. 
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