
PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 90 NR 1/2014 149

Paweł DYMORA, Mirosław MAZUREK, Dominik STRZAŁKA

Politechnika Rzeszowska, Zakład Systemów Rozproszonych

Long-range dependencies in quick-sort algorithm

Streszczenie. Sortowanie jest jednym z najczęstszych wykorzystywanych typów przetwarzania w systemach komputerowych. W prezentowanym
podejściu sortowanie będzie rozważane jako wprowadzenie porządku w przetwarzanym zadaniu wejściowym oraz algorytm jako fizyczny system
(odpowiedzialny za obliczenia). Zazwyczaj analiza zachowania dowolnego algorytmu jest realizowana w kontekście klasycznej złożoności
obliczeniowej. W niniejszej pracy istnienie zależności długoterminowych w dynamice przetwarzania jest wyznaczane w oparciu o współczynnik
Hurst’a. (Zależności długoterminowe w algorytmie quick-sort).

Abstract. Sorting is one of the most frequently used types of processing in computer systems. In presented approach sorting will be considered as
an introduction of order into processed input task and algorithm as a physical system (responsible for computations). This analysis shows how the
dependencies in processed tasks can influence the behavior of algorithm (or equivalently Turing machine). Normally, analysis of any algorithm
behavior is done in terms of classical computational complexity. In this paper the rate of existence of long-term correlations in processing dynamics
is calculated basing on Hurst coefficient.

Słowa kluczowe: zależności długoterminowe, algorytm szybkiego sortowania, współczynnik Hurst’a, samopodobieństwo.
Keywords: long-range dependence, quick-sort algorithm, Hurst factor, self-similarity.

doi:10.12915/pe.2014.01.35

Introduction

It is widely believed that computing is a mathematical
science. This view is somewhat justified, since the
foundation of most of the considerations in computer
science is the idea of a Turing machine [1]. This is a purely
mathematical concept that was presented as one of the
possible answers to the problem posed by David Hilbert
(other answers were given by K. Gödel, A. Church and S.
Kleene). During years this model was also regarded as a
point of reference for many theoretical aspects in computer
science [2]. This machine has nothing to do with physical
device and description of some of its features and
properties is quite difficult in terms of physics, especially the
infinite length of tape (i.e. memory) and zero energy
consumption during processing. This is a model that is used
for algorithmic processing and whenever someone says
‘algorithm’ always has in mind the model of Turing machine.
However, on the other hand, it should be also noted that
any implementations of this machine (simply: computers)
are physical devices, which are subject to many restrictions:
tape (memory) always has finite length and also during
operation machine consumes energy and produces entropy
[3]. Many aspects of the practical applications of the theory
developed in computer science are carried out by computer
engineering relating to various types of systems:
computers, computer networks, software (including
operating systems), databases, graphical interfaces, etc.
Most of their description is implemented in terms of simple
systems, but it seems that modern computer systems have
evolved towards increasing software and hardware
complexity and their description needs a new perspective:
complex systems.

From the physical point of view computer processing is
done in computer systems (it takes a place in machine) and
is a transformation of energy into useful work (implemented
calculations, performed algorithms) and entropy (part of the
energy that is wasted: for example, heat generated from the
fan, but not only - this will be explained a bit later). This
problem was pointed out by Charles Bennett, who stated
that [3]: computers may be thought of as engines for
transforming free energy into waste heat and mathematical
work, but somehow his approach was not pursued. In this
paper this observation is a main point of reference and as
an example of considerations that can be carried the
problem of sorting will be presented. In theoretical computer
science it is assumed that it does not matter how the
implementation of the Turing machine is done (it even may
be a steam engine), but it seems that there is a need to

introduce among mathematical considerations some
important and necessary physical aspects. Justification for
this statement can be found among many voices saying that
the computer science is not necessary a mathematical
science but rather a physical one [2]. The main problem is a
fact that the level of usage of various statistical methods
and analysis in theoretical considerations is very small;
generally it is assumed that mathematical considerations
are sufficient. However, some areas of computer science
where this isn’t enough can be shown. For example:
static and dynamic hazard in combinatorial systems (digital
devices) [4], a problem of states encoding in asynchronous
sequential circuits (critical and non-critical races) [4],
statistical self-similarity that causes limited bandwidth of
queues [5], limited scalability of distributed systems [6],
communication costs that influence the efficiency of
distributed and parallel systems [7], rapid decline in the
performance of systems with limited resources [8].

Most of these problems have a physical background and
cannot be understand in terms of mathematical (theoretical)
approach.

Problem of sorting
In this paper we present a different perspective on the

problem of sorting analysis. It is one of the most important
forms of processing in computer systems. According to
Donald Knuth words from his book The Art of Computer
Programming, even 70% of operations performed by
computer system are sorting. This problem is algorithmically
closed, i.e., algorithms are as efficient as it is assumed by
theoretical considerations (class O (n log n)) and this is one
of the first issues raised on algorithms and programming
courses. They are used to explain a question: “What is the
computational complexity?”. This concept was introduced
around 1967 by Hartmanis and Stearns [9], who wanted to
show how the solutions of some problems can be difficult
and there may be different ways (more or less efficient) to
solve computational tasks. Theirs proposed approach made
important assumptions that the algorithm performance is
measured by [10]:
1) The analysis of the number of dominant operations
requests, which may include comparison, arithmetic
operations, loop calls, etc. This diversity is justified by the
fact that in most types of computers (but not all), each such
an operation is performed during the same time.
2) The measure is calculated independently on the input set
properties (instances) and the so-called worst case (the
largest number of required dominant operations) is taken (in

150 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 90 NR 1/2014

the sorting problem usually the opposite arrangement of
elements is considered). This condition implies the
independence between a set of input data (task) and a
Turing machine (hardware).
3) The complexity is expressed in mathematical notations:
O, Ω, Θ

Donald Knuth says [11] that instead of sorting one
should talk about ordering, therefore, in terms of physics
this is a process of introduction of order into processed set
according to the accepted relation (usually ≤). Sorting
reduces the level of entropy in input set – in fact this
entropy is moved outside the computer and thus the
production of entropy in the computer system denotes not
only the waste of energy, but also can be related to the
specific types of performed processing.

Insertion-sort as a background

There are many different methods of sorting of various
complexities. As an introduction to these considerations a
sort algorithm based on insertion will be shown It is a very
simple algorithm, but quite informative. The idea of its work
reflects the behavior of bridge player who sorts cards. This
algorithm is quite slow, because for the worst-case (a
reverse order of the elements in the input set) its complexity
is O(n2) – the number of dominant operations increases
with the square of the input size of the task (n is the number
of processed elements – keys – in the input set), but on the
other hand in the optimistic case its complexity is Ω(n) - the
number of dominant operations grows linearly. This
algorithm is quite often used as a didactical example [10],
but it also very interesting because it has a different
complexity for extreme cases and one can ask how it works
when the assumption of independence between input data
and Turing machine is abandoned. Theoretical approach is
trying to deal with this by analyzing the expected (average)
computational complexity, and again for insertion-sort the
result is shown by the notation O (again it’s O(n2)), but one
can go step beyond and wonder whether the dynamics of
this algorithm can be described using the methods
associated with statistical analysis of complex systems.
This can be done – see for example [12] and [13] where it
has been shown that the number of dominant operations is
also dependent on the properties of input data set. This
showed that since insertion-sort algorithm has its own
Turing machine, and it can be implemented in a physical
machine, it may be also interesting to determine whether
the amount of consumed energy and produced entropy has
some kind of dependencies usually associated with the
widely understood complex systems. In presented paper
other important algorithm will be analyzed, i.e., quick sort.

Simulation tests

For simulation tests a set of special input data was
taken - trajectories of fractional Brownian motion with
different values of the index H. This type of trajectories has
clearly visible downward and upward trends which during
sorting can be considered as local optimistic and
pessimistic cases of the pre-sorting data. H index is taken in
order to change the level of long-term dependencies and
memory effect. The example of such sets is presented in
Fig. 1 and Fig. 2.

A quick-sort algorithm is structured differently than the
insertion-sort algorithm. It was proposed by Ch. Hoare and
it uses the divide and conquer method. In the algorithm the
whole task is divided into smaller tasks then they are solved
by recurrence approach again by quick-sorting. It is a
recursive algorithm - repeatedly calls itself.

Below a simple example of its work is presented (Fig. 3).
The key element is called a pivot, i.e. it serves as a

reference point in subsequent comparisons. There are
many different implementations of this algorithm and
methods of pivot selection.
 a)

b)

Fig. 1. Exaples of input data a) H=0.5, b) H=0.9

Regardless of how the pivot selection is done this
algorithm has a mean computational complexity expressed
as O (nlogn), although for a well-sorted data the complexity
is O(n2). Generally, a pivot value is selected in the middle
(with a factor p = 0.5), but it also could be selected
extremely (values of p = 0.00…1 or p = 0.00…9). In the
example below, this is 7 (Fig.3).

Fig. 2. Trend analyzis in the set of time series

Fig. 3. Example of quick-sort processing with pivot equals 7

In subsequent steps, the elements of the input are
compared to the pivot and if they are smaller than the pivot

decrease in the number of dominant operations

increase in the number of dominant operations

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 90 NR 1/2014 151

then they are moved to the left, else when they are larger
they are moved to the right (in our example this is a swap
operation). After reviewing all the elements in an input set it
recursively runs the same algorithm, but for the both half of
input set, etc.
a)

b)

Fig. 4. Example of number of dominant operations for two input
sets H = 0.1 and a) p=0.1; b) p = 0.8.

In this study an experiment is proposed in order to
determine whether a quick-sort algorithm is sensitive or not
on long-term dependencies in input set similarly like in the
approach used for the analysis of insertion sort [13]. For
each different H value (H = 0.1, H = 0.2 ... H = 0.9, H =
0.99) 100 sets of input data were generated (total number
on input sets: 1000). These were the trajectories of
fractional Brownian motion with n = 106 values and then
each of them was sorted by quick-sort algorithm with
different values of pivot (p = 0.1, 0.2 ... 0.9, 0.99) – thus the
total number of quick-sort executions was 10000. For each
quick-sort algorithm execution the number of dominant
operations used by this algorithm for each sorted key from
the input set was recorded (the total number of records of
quick-sort algorithm behaviors was 10000, each such a
record contains 106 elements). Figure 4 shows examples of
such records for two input sets: one with H = 0.1 and pivot
setup to p = 0.1 and p = 0.8 – top part of the figure, and
second with H = 0.8 and the same pivots.
For each such a record the Hurst index H was calculated. In
order to have a possibility to compare results three methods
were used: DFA, R / S and the study of power spectrum.
Figure 6 a,b,c shows graphs in 3D of the average
(calculated on the basis of 100 time series) value of H index
determined on the basis of DFA method (Fig. 6a), R / S
method (Fig. 6b) and power spectrum (Fig. 6c). Because
there was a possibility to change H index of input set and
the value of pivot p for each quick-sort execution Figure
5a,b,c shows also values of H index (Hout) depending on the
values of p with constant values of H in input sets (Hin) – left
part of the figure, and also shows values of H index (Hout)

depending on the values of H in input sets (Hin) with
constant values of p – right part of the figure.
a)

b)

Fig. 5. Example of number of dominant operations for two input
sets for H = 0.8 and a) p = 0.1; b) p=0.8.

a)

b)

152 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 90 NR 1/2014

c)

Fig. 6. Values of H index in output records of dominant operations
for each sorted key (Hout) depending on the values of H in input set
(Hin) and chosen pivots p (top part - DFA method, middle part - R/S
method, bottom part - power spectrum method).

Conclusions

The results of presented experiment shows that the
performance of high-speed sorting may be associated with
the presence of long-term processes in computer system.
The first two methods used for H calculations, i.e., DFA and
R / S, clearly indicated that, regardless of the nature of the
input data (with or without long-term dependencies) and the
method for selecting pivots p (except in the case of p =
0.99), the values of H index for the number of necessary
dominant operations executed by quick-sort are extremely
high. In this algorithm such an operation is a comparison of
two elements (sorted keys from input set) and this process
is characterized by a relatively high value of the index H. In
the case of the study of power spectrum, the obtained
values of H are at a slightly lower levels, but one can still
see the potential effect of existence long memory. The
results obtained above require further analysis.

REFERENCES
[1] Turing, A. M.: On computable numbers, with an application to

the Entscheidungsproblem, Proc. of the London Mathematical

Society, Series 2, 42 (1936), pp. 230–265. Errata appeared in
Series 2, 43, pp. 544–546, 1937.

[2] Eberbach E., Wegner P. Beyond Turing machines, Bulletin of
the European Association for Theoretical Computer Science
81, pp. 279–304, 2003.

[3] Bennett, Ch. H.: The Thermodynamics of Computation – a
Review, Int. J. of Theor. Phys., vol. 21, No. 12, pp. 905–939,
1982.

[4] Ch. Roth, Fundamental of logic design, Cengage Learning, (
2009)

[5] B. Strzałka, M. Mazurek, D. Strzałka: Queue Performance in
Presence of Long-Range Dependencies – an Empirical Study,
International Journal of Information Science, 2(4), pp. 47-53,
(2012)

[6] Grabowski F., Strzałka D. Computer engineering by non-
extensive statistics approach. in: New technologies in computer
networks. WKiŁ, Warsaw, 2006

[7] Grabowski F., Strzałka D.: Limitations of asynchronous
systems scalability, , Measurement, Automatics, Control, 53,
pp. 6-9 (2007)

[8] Grabowski F. Logistic equation of arbitrary order, Physica A:
Statistical Mechanics and its Applications, Vol. 389, Issue 16,
pp. 3081–3093, 2010

[9] Hartmanis, J. and Stearns, R.E., On the Computational
Complexity of Algorithms,. Trans. Am. Math. Soc., vol. 117 (5),
285-306, 1965

[10] T. H. Cormen, Ch. E. Leiserson, R.L. Rivest, and C. Stein,
Introduction to Algorithms , MIT. Press, mcgraw- Hill Book
Company, 1990

[11] D. Knuth, The art of computer programming, Addison-Wesley,
1968

[12] D. Strzałka, F. Grabowski: Towards possible non-extensive
thermodynamics of algorithmic processing - statistical
mechanics of insertion sort algorithm, International Journal of
Modern Physics C, vol. 19 n. 9, pp. 1443 – 1458, (2008)

[13] Strzałka, D. Processes in the computer system at the interface
between data and simple insertion sort algorithm in terms of
nonextensive statistics, PHD. Thesis, Gliwice, 2009.

Authors: dr inż. Paweł Dymora, Politechnika Rzeszowska, Zakład
Systemów Rozproszonych, ul. W. Pola 2, 35-959 Rzeszów, E-mail:
pawel.dymora@prz.edu.pl; dr inż. Mirosław Mazurek, Politechnika
Rzeszowska, Zakład Systemów Rozproszonych, ul. W. Pola 2, 35-
959 Rzeszów, E-mail: miroslaw.mazurek@prz.edu.pl; dr inż.
Dominik Strzałka, Politechnika Rzeszowska, Zakład Systemów
Rozproszonych, ul. W. Pola 2, 35-959 Rzeszów, E-mail:
strzalka@prz.edu.pl .

