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Determination of reduced parameters for the impedance 
boundary conditions at screened surfaces  

 
 

Abstract. A method for calculating impedance boundary conditions reduced parameters at permeable screen surfaces in a quasi-stationary 
electromagnetic field is presented. Solving a model, spherically symmetric system allowed to obtain dependencies, determining these parameters as 
functions of the curvature radius of the screened surface, and material parameters of the screen and the screened area. 
 
Streszczenie. W pracy zaproponowano metodę obliczania zredukowanych parametrów impedancyjnych warunków brzegowych na powierzchniach 
ekranów przenikalnych w quasi-stacjonarnym polu elektromagnetycznym. Na podstawie rozwiązania modelowego zagadnienia o symetrii sferycznej 
otrzymano zależności pozwalające określić te parametry w zależności od promienia krzywizny powierzchni ekranowanej oraz parametrów 
materiałowych ekranu i obszaru ekranowanego. (Określanie zredukowanych parametrów dla impedancyjnych warunków brzegowych na 
powierzchniach ekranowanych). 
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Introduction 

Determining distribution of a quasi-stationary 
electromagnetic field in the presence of conductive bodies 
remains one of the most intricate  problems in technical 
electrodynamics. Complex, three dimensional geometry of 
real technical systems provides a challenging task for 
solving such systems. It is therefore advisable to simplify 
the problem by developing the impedance boundary 
conditions (IBC) for surfaces of conductive bodies [1-4]. 
Then, it is no longer necessary to solve the field equations 
in the conductive areas, where computations require fine 
discretization of the areas, and the problem is reduced to 
seeking a scalar function of a magnetic potential [5-8]. 

One of the assumptions made when introducing IBC is 
that all the dimensions of the conductive bodies are 
significantly larger than equivalent depth of electromagnetic 

field penetration  2 , namely at least triple its 

value. Therefore, it is principally incorrect to assume IBC to 
be valid at penetrable screened surfaces, most frequently  
used to screen low frequency fields [9], as the thicknesses 
fail to meet this requirement. Nevertheless, it is conceivable 
that if all the remaining assumptions for IBC hold, then an 
appropriate modification of certain characteristic parameters 
should allow to apply this condition also at surfaces of 
penetrable screens. 

In the presented paper a method for determining IBC 
characteristic parameters in relation to material parameters 
of the screen and the screened area, namely the screen 
thickness and the surface curvature radius, has been 
developed as based on the analysis of a model problem 
that can be solved analytically. It allows the relations sought 
to be finally expressed in an exact, though quite complex, 
form of algebraic expressions. 
 
Impedance Boundary Conditions (IBC)  

Impedance boundary conditions generally provide 
approximated relations between the electromagnetic field 
components or potentials at the boundary surfaces between 
conductive and dielectric areas. It is further assumed that 
the dielectric area has the permeability of a vacuum, and its 
conductivity equals zero.  

The fundamental assumptions made for IBC are large 
curvature radii at the boundary surface in relation to the 
field penetration depth  into the conductor, and the 
conductive area to be significantly bigger in size than the 

penetration depth. For harmonic low frequency fields the 
IBC take the following forms [1-8]: 
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where: E, H, J are complex amplitudes for an electric and 
magnetic field, and current density, respectively, at the 
boundary surface, n – is a unit vector normal the boundary 
surface pointing outwards the conductive area, En, Hn – the 
normal components of E, H vectors,  – a magnetic 
potential complex amplitude ( gradH ), 
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Laplace operator, h1, h2 - Lamé parameters for the 
orthogonal coordinates s1, s2, describing the boundary 
surface,  
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cZ  - the conductor wave impedance, 

(8)    j  - the propagation constant in the 

conductive area, 
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It should be noted that apart from conditions (1) and (2), the 
remaining conditions are not entirely equivalent to each 
other; hence, parameters  and  are clearly distinguished 
as their reduced values calculated further at the screened 
surface are not equal. 
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Formulation of a model problem  
As mentioned in the introduction the assumed large 

sizes of conducting areas in comparison to their field 
penetration depth, prevent IBC to be directly applied at 
permeable screens surfaces. Hence, the main aim of this 
paper was to find a formula for calculating a modified value 
for characteristic coefficients Zc, ,, occurring in (1) – 
(5) in a way that makes IBC applicable also at the surfaces 
of screens of any constant parameters and any thickness.  

Thus, a model problem illustrated in Fig. 1 was 
considered. The system under analysis comprises three 
areas, namely: 1 – a dielectric area (= 0,  = 0), 2 – a 
spherical conductive screen (= 2,  = 2) of the radius R1 
and a constant thickness d, 3 – a spherical screened area 
(interior), either dielectric or conductive (= 3, =3) of 
the radius R2. 

A homogenous, harmonic magnetic field of a complex 
amplitude H0 directed along the OZ axis of the coordinating 
system provides the exciting field for the system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1. The system under consideration  
 
It is assumed that  
 magnetic permeability and electric conductivity are 
constant for all the subareas, 
 all the electromagnetic field components are sinusoidal 
functions of time with a pulsation , 
 displacement currents might be neglected, i.e. low 
frequency fields are considered, 
 no unbalanced electrical charge is present in the 
system. 
 Under such assumptions the complex field functions can 
be introduced with the respective complex amplitudes E 
and H satisfying the equations 

(10)    EH rot  

(11)    HE jrot   

as well as classic electrodynamics boundary conditions on 
continuity of the tangential components E and H at 
surfaces r = R1, r = R2. By introducing a magnetic vector 
potential A (B = rotA, E = –jA) and expressing it with a 
spherical coordinates r, ,  the problem can be reduced to 

seeking one function of two variables A(r,) that satisfies 
Helmholtz equation A = 2A; the remaining A 
components are equal zero. 
 
The exact solution 

A general solution to the problem set as above for 
particular system areas can be obtained by applying 
variable separation method. The resulting field functions are 
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All the other components equal zero. 
Constants FI - FIII determined from the boundary conditions 
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take forms of complex algebraic relationships. They can be 
represented as follows  
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Solution with IBC applied 

 The solution where IBC are applied is considered valid 
solely for the internal area , and parameters Zc, ,, 
occurring in (1) – (5) are considered free, i.e. unrelated by 
(7) – (9). To make them different from the parameters 
described therein, we denote them as    , , ,cZ  

respectively, and term them as reduced parameters for IBC. 
The solution in its general form is identical to the one 
presented in section 4, by equations (12) – (14), with the 
exception of the constant value FI. For specific conditions 
(1) - (5) we then obtain 
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By inversing these relations we arrive at  
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For constant FI defined in (21) we obtain a solution identical 
to the exact solution.  
 
Computations results  

For a model system described in section 3 (Fig. 1) a few 
cases, typical for technical applications, were analysed. The 
induction field frequency of 50 Hz was adopted. Two types 
of the screened areas  were taken into account, namely 
a dielectric area of a vacuum permeability, and a conductive 
area with parameters typical for a structural steel. 
Parameters for screens were those of copper/ aluminium, 
and transformer steel, for electromagnetic and magnetic 
screens, respectively. 

Detailed data:  
The screened area: dielectric r = 1, =0 steel r = 500, 
= 8MS/m, radius R2 = 0 – 100 mm 
Screens: Al  r = 1, = 35MS/m; Cu r = 1, = 58 MS/m; 
steel, r = 2000, = 8MS/m; thickness d = 0 - 30 mm 
Internal area: r = 1, = 0 

Figures 2 – 3 present the computed distribution for 
magnetic flux density spherical components for the systems 
under analysis. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. Distribution for Br component of the magnetic flux density for 
a steel sphere and an Al screen 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Distribution for B component of the magnetic flux density for 
a steel sphere and an Al screen 
 
The dependence of the reduced coefficient ’on the sphere 
radius R2 and screen thickness d was studied in details as 
the remaining IBC reduced parameters can be expressed 
as dependent on ’ by substituting (24) to (26), (27) and 
(29). The computed results are presented in Figures 4 – 6. 
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Fig. 4. The relationship between  and the radius R2 for various 
configurations of sphere-screen systems 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. The relationship between  and the screen thickness d (Cu 
screen) for the conductive area, 8 Ms/m  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. The relationship between  and the screen thickness d 
(transformer steel screen) for the conductive area, 8 Ms/m 

 
Conclusions  
A method for calculating IBC reduced parameters at 
permeable screen surfaces in a quasi-stationary 
electromagnetic field is presented. Solving a model, 
spherically symmetric system allowed to obtain 
dependencies, i.e. equations (21) and (26) – (29), 
determining these parameters as functions of the curvature 
radius of the screened surface, and material parameters of 

the screen and the screened area. Such dependencies for 
typical technical systems applied were subject to analysis, 
which allowed to draw the following conclusions. 
 The curvature radius R of the screened surface 
significantly influences the values of IBC reduced 
parameters for R < 3  (see Fig. 5 for comparison). For R > 
6  the influence proved to be negligible.  
 IBC reduced parameters differ significantly from non-
reduced parameters for magnetic screens of thickness d < 
1.5, while for thicknesses d > 2 the discrepancies are 

practically negligible (see Figs. 15, 16). 
 The dependencies of real and imaginary parts of the 
IBC reduced parameters upon the screen thickness were 
found to be principally different from that of the unreduced 
parameters where real and imaginary parts are identical – 
see (7)-(9) for comparison. It means that the phase 
displacement between the electric and magnetic field 
vectors at the surface topped with a penetrable screen is 
greatly impacted by the screen thickness (see (1), (2)).  
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