
PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 90 NR 2/2014 85

Agnieszka KAMIŃSKA, Włodzimierz BIELECKI

West Pomeranian University of Technology, Szczecin

Estimation of the execution time of coarse-grained parallel
program loops

Abstract. This paper presents results of experimental research on possibilities of estimating the execution time of coarse-grained parallel program
loops based on a regression model. The intended use of the model in question is iterative compilation.

Streszczenie. W artykule przedstawiono wyniki badań eksperymentalnych dotyczących możliwości obliczeniowego szacowania czasu wykonania
gruboziarnistych, zrównoleglonych pętli programowych w oparciu o model regresyjny. Przewidywanym obszarem zastosowania przedmiotowego
modelu jest kompilacja iteracyjna. (Obliczeniowe szacowanie czasu wykonania gruboziarnistych, zrównoleglonych pętli programowych).

Keywords: iterative compilation; program execution time; performance estimation.
Słowa kluczowe: Kompilacja iteracyjna, czas wykonania programu, szacowanie wydajności.

doi:10.12915/pe.2014.02.23

Introduction

In many practical applications of computers, one of the
most crucial problems is the duration of program execution.
A common trend is that the duration of program execution
has to be as short as possible.

One uses various approaches and techniques in order
to achieve the purpose set by this trend. An approach that
is worth noticing here is parallel computing which focuses
on both software and hardware aspects related to duration
of program execution.

In parallel computing, an original problem to be solved is
divided into smaller ones, which are then solved
concurrently ("in parallel") which in consequence results in
shortening the time spent on solving the original problem.

An important characteristic of so comprehended
parallelism is its granularity, i.e. the number of operations
which are executed between communication or
synchronization events. There are two types of granularity
(hence, parallelism): coarse-grained granularity (coarse-
grained parallelism) and fine-grained granularity (fine-
grained parallelism). An application exhibits coarse-grained
parallelism if the number of communication or
synchronization events between its subtasks is low. An
application exhibits fine-grained parallelism if the number of
communication or synchronization events between its
subtasks is high [1].

There are many ways to divide a problem into smaller
problems intended for parallel solving. The only limitation is
that particular ways of doing the division have to produce
semantically equivalent results. In practice, this means that
there has to be semantic equivalence between different
versions (source codes) of a program executing a given
task.

Currently, there are no theoretical means enabling one
to state, at the compilation stage, the actual execution times
(in a target hardware environment) of syntactically different
source codes of a given program. Hence, as some practical
problems and applications (e.g. scientific calculations,
embedded systems, etc.) require high efficiency, one
carries out so-called iterative compilation. In iterative
compilation, many syntactically different source codes of a
given program are created and then executed in the target
hardware environment. Based on the measured execution
times of particular source codes, one selects for final use
the source code having the shortest measured execution
time [2].

Iterative compilation is an effective yet time consuming
approach. One of possible ways of shortening the duration
of iterative compilation is to use a model for estimating the
efficiency of parallel applications in order to statically (i.e.

without executing a program in the target hardware
environment) preselect these source codes of a given
program that have possibly shortest execution time. Since
typically used methods of modelling the efficiency of parallel
applications based on the measured program execution
time, i.e. Amdahl’s law, extrapolation from observation and
asymptotic analysis [1] are inadequate for this purpose, the
authors have elaborated their own model for the estimation
of the execution time of coarse-grained parallel program
loops (coarse-grained parallelism exhibits a greater
potential than fine-grained parallelism and for this reason
has been selected for more thorough analysis).

The elaborated model is a regression model. It presents
the dependence between the estimated total CPU time
needed for execution of a given program loop and the
following factors:

a) A specific way in which the program loop has been
parallelized,

b) Specific features of an algorithm executed in the
program loop,

c) Parameters of the target hardware environment in
which the parallelized program loop will be executed.

The above-mentioned factors have been reflected in the
model by means of independent variables, in the following
way:

a) A specific way in which the program loop has been
parallelized.

This factor has been expressed in the model by means
of independent variables X3 and X4, where: X3 – maximum
number of iterations in an iteration chunk per OpenMP
thread, X4 – number of OpenMP threads executing the
program.

b) Specific features of an algorithm executed in the
program loop.

This factor has been expressed in the model by means
of independent variable X2, where X2 – total weighted
number of arithmetic operations per OpenMP thread.

c) Parameters of the target hardware environment in
which the parallelized program loop will be executed.

This factor has been expressed in the model by means
of independent variable X1, where:

(1)

fD

aLsLaLsL
X

2211
1

where: sL1 – data storage capacity of L1 data cache,
available for a single OpenMP thread [B], sL2 – data
storage capacity of L2 cache, available for a single
OpenMP thread [B], aL1 – set associativity of L1 data

86 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 90 NR 2/2014

cache, aL2 – set associativity of L2 cache, Df – data
footprint per OpenMP thread, calculated as per [3, 9] [B].

The model is as follows:

(2) 4321 4321 aaaa XXXXYt

where: Yt – total CPU time, a1, a2, a3, a4 – parameters
whose values are to be estimated by means of regression
analysis carried out on empirical data collected in a target
hardware environment for a specially prepared sample.

Hereafter, the model specified with equation (2) will be
referred to as model (2).

Detailed assumptions of model (2), the criteria used for
selecting the variables of the model and its form are
presented and discussed in a separate paper (see [4]).

The purpose of this paper is to present results of
applying model (2) to the estimation of the execution time of
parallel program loops.

Results of experimental research

Experimental research was carried out for 10 program
loops (CG_cg_3, CG_cg_4, FT_auxfnct_2,
LU_HP_pintgr_11, MG_mg_3, UA_diffuse_2, UA_diffuse_3,
UA_diffuse_4, UA_transfer_11, UA_transfer_16) selected
from the NAS suite that has been elaborated by the NASA
Advanced Supercomputing (NAS) Division as software
means for assessing the performance of parallel
supercomputers [5]. The software-hardware environment of
the research is presented in Table 1.

Table 1. Software-hardware environment of experimental research
Processor Intel Core 2 Quad Q6600
Number of processor cores 4
Number of processor threads 4

L1 data cache
4 x 32 KB, 8-way set
associative, 64-byte line size

L2 cache
2 x 4096 KBytes, 16-way set
associative, 64-byte line size

Operating system Linux Slax 6.1.2
Compiler gcc 4.2.4
Version of OpenMP used for
parallelization

OpenMP v2.5

Compilation level optimization
None (Optimizations turned off;
compilation with the –O0 option)

The first stage of the research was to determine the values
of parameters a1, a2, a3 and a4 of model (2).

The easiest possible way of determining the values in
question would be to determine them separately for each of
the ten tested loops, by carrying out a regression analysis
of the values of variables X1, X2, X3, X4 and the actual
duration of execution of each version of the loop in the
target hardware environment. However, such an approach
would be time consuming and therefore, taking into account
the intended use of the model (i.e. improving iterative
compilation by shortening its duration) – inadequate to fulfil
the related needs.

Therefore, instead of determining the values of
parameters a1, a2, a3 and a4 of model (2) separately for
each tested loop, the values in question were determined
for 2 reference loops: matmul and nonInterf. Both reference
loops have carefully chosen characteristics in respect of
data reuse1 and interference2.

1 When data are processed in a program loop, a given sequence of
operations is executed many times on varying data. The program
loop may many times refer to the data coming from one and the
same memory location or adjacent memory locations. These
situations are referred to as, respectively, temporal data reuse and
spatial data reuse [3, 6].

The criteria used for elaborating the reference loops are
as follows:

1/ Presence of data reuse,
2/ Presence of interference resulting from temporal data

reuse.
The characteristics of the adopted reference loops in

respect of criteria 1/ and 2/ are presented in Table 2.

Table 2. Characteristics of the adopted reference loops

Loop name
Presence of data

reuse

Presence of
interference resulting
from temporal data

reuse
matmul Yes Yes

nonInterf Yes No

Source codes of the adopted reference loops:

The matmul reference loop:

int ma[N][N],mb[N][N],mc[N][N];

for (i = 0; i <= N-1; i++) {
 for (k=0; k <= N-1; k++) {
 r = ma[i][k];
 for (j=0; j <= N-1; j++){
 mc[i][j]= mc[i][j] + r*mb[k][j];
 } //endfor j
 } //endfor k
} //endfor i

The nonInterf reference loop:

int ma[N][N],mb[N][N],mc[N][N],md[N][N],me[N][N];

for (i = 0; i <= N-1; i++) {
 for (j= 0; j <= N-1; j++) {
 ma[i][j]=1;
 mb[i][j]=mc[i][j]+md[i][j]*me[i][j];
 } //endfor j
} //endfor i

The values of parameters a1, a2, a3, a4 of model (2),

determined for the matmul reference loop based on
empirical data, are as follows:

a1=-0,298695
a2=0,623738
a3=0,014426
a4=0,962976
The values of parameters a1, a2, a3, a4 of model (2),

determined for the nonInterf reference loop based on
empirical data, are as follows:

a1=-0,325431
a2=0,675172
a3=-0,082602
a4=0,981967
Next, for each tested loop of the NAS suite, one of the

two reference loops was assigned as a related reference
loop. The assignment was based on the similarity of
characteristics of the tested loops in respect of data reuse
and interference, to the same characteristics of the
reference loops (see Table 3). In order to state whether
there is the similarity between a given tested loop and any

2 Interference is related to the cache replacement policy
(associativity) [7] of processor cache memory. Interference takes
place when a cache memory line containing data that can be
reused is overwritten with new data despite the fact that there are
unoccupied cache lines which could be well used for storing the
new data – yet because of the applied cache replacement policy,
the new data cannot be stored elsewhere than in some already
occupied cache line(s) resulting from the policy in question [8].

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 90 NR 2/2014 87

of the reference loops, one used data reuse factors: self-
temporal reuse factor and self-spatial reuse factor. Both
factors are calculated based on solely the source code of a
program (i.e. there is no need to execute the program in
order to calculate the factors). Self-temporal reuse factors
and self-spatial reuse factors are calculated separately for
each reference in the source code. If even one of all the
self-temporal reuse factors and self-spatial reuse factors
calculated for the source code under analysis is greater
than 1, then the source code exhibits data reuse. If even
one of all the self-temporal reuse factors calculated for the
source code under analysis is greater than 1, then the
source code exhibits temporal data reuse .The approach
used for the calculation of self-temporal reuse factors and
self-spatial reuse factors is presented in [3, 9].

The concept of the software prepared by the authors
and based on an external library, Clan [11], is presented in
[9, 10]. With this software, it is possible to automatically
calculate the values of data reuse factors for a given source
code. This in turn opens a possibility of the automatic
identification of a reference loop related to a given tested
loop.

Table 3. Characteristics of the loops selected from the NAS suite

Loop name
Presence

of data
reuse

Presence of
interference

resulting from
temporal data

reuse

Reference
loop

CG_cg_3

Yes No nonInterf

CG_cg_4
FT_auxfnct_2
LU_HP_pintgr_11
MG_mg_3
UA_diffuse_2
UA_diffuse_3

Yes Yes matmul
UA_diffuse_4
UA_transfer_11
UA_transfer_16

The next stage of the research was to examine the quality
of model (2) for the loops selected from the NAS suite (see
Table 3).

For each tested loop and various sizes of matrices
processed in these loops, one generated several different
but semantically equivalent versions of parallel source
code. For each generated version of parallel source code,
one measured the duration of its execution on a multi core
processor and compared this duration with the
corresponding duration estimated as per model (2).

Then, the measurements and the estimates as per
model (2) were compared so as to verify model (2) in
qualitative and quantitative aspects.

The purpose of the qualitative verification of the model
was as follows. To check whether the measured durations
of execution of particular versions of the loop and the
corresponding estimates as per model (2) change in the
same direction. For all tested cases (i.e. pairs comprising
the tested loop and the size of matrices processed in the
loop), the results of the verification were positive.

The purpose of the quantitative verification of the model
was as follows. To check whether mean values of
estimation errors for estimates as per model (2) related to
the corresponding, measured durations of program
execution are acceptable. The quantitative verification of
the model was carried out for each tested loop and for each
size of matrices processed in the loop. The resultant
estimation errors are presented in Table 4.

It should be stressed here that because of the intended
use of the model, its quantitative verification is of minor

importance in relation to its qualitative verification. In view of
the intended use of the model, it is crucial that the model
should make it possible to order various source codes of a
given loop by execution time, in a descending manner –
however, without one’s actually executing the source codes
in question in the target hardware environment. If, applying
the model, it is possible to do such ordering, then the model
resultant estimation errors are not so relevant.

Table 4. Estimation errors for estimates as per model (2)

Loop name

Size of the
matrix

processed
in the loop

Mean for the
absolute value of

the relative
estimation error

[%] for the
estimate as per

model (2)

Reference
loop

CG_cg_3 75 000 14.27 nonInterf
CG_cg_3 118 000 13.73 nonInterf
CG_cg_3 160 000 12.48 nonInterf
CG_cg_4 100 000 10.48 nonInterf
CG_cg_4 215 000 11.66 nonInterf
CG_cg_4 330 000 13.66 nonInterf
FT_auxfnct_2 30 53.34 nonInterf
FT_auxfnct_2 38 51.54 nonInterf
FT_auxfnct_2 45 53.05 nonInterf
LU_HP_pintgr_11 200 16.42 nonInterf
LU_HP_pintgr_11 265 16.47 nonInterf
LU_HP_pintgr_11 330 14.84 nonInterf
MG_mg_3 26 000 25.96 nonInterf
MG_mg_3 57 444 29.21 nonInterf
MG_mg_3 88 888 31.04 nonInterf
UA_diffuse_2 80 000 6.80 nonInterf
UA_diffuse_2 173 333 5.12 nonInterf
UA_diffuse_2 266 666 6.44 nonInterf
UA_diffuse_3 30 31.60 matmul
UA_diffuse_3 50 16.88 matmul
UA_diffuse_3 71 27.84 matmul
UA_diffuse_4 30 28.55 matmul
UA_diffuse_4 50 12.70 matmul
UA_diffuse_4 71 26.49 matmul
UA_transfer_11 100 10.49 matmul
UA_transfer_11 267 11.30 matmul
UA_transfer_11 433 14.86 matmul
UA_transfer_16 100 12.27 matmul
UA_transfer_16 267 11.10 matmul
UA_transfer_16 433 14.86 matmul

There are large differences in the estimation errors obtained
for particular tested loops. The differences in question result
from large diversity of the tested loops in respect of:

- Type of reuse of the data processed in particular
loops,

- Presence or absence of interference,
- Number of threads executing particular loops,
- Mapping of loop iterations to threads.

However, in view of positive results of the qualitative
verification of the model, large differences in the estimation
errors obtained for particular tested loops are of minor
importance.

Conclusions

The presence of data reuse (in case of the tested loops
for which nonInterf was the reference loop) or the presence
of data reuse and interference (in case of the tested loops
for which matmul was the reference loop) was what the
tested loops (see Table 3) had in common. As far as the
criteria described by the independent variables of model (2)
are considered, there was large variety among the tested
loops.

In view of the above and taking into account the
intended use of model (2), estimation errors obtained for

88 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 90 NR 2/2014

particular tested loops (see Table 4) can be regarded as
acceptable. Because of large variety of the loops used for
verification of model (2), based on the achieved results it
can be expected that also for other loops meeting the
assumptions of model (2), the model shall produce
estimates of acceptable accuracy.

REFERENCES
[1] Bielecki W., Essentials of Parallel and Distributed Computing,

Informa, 2002
[2] Kisuki T., Knijnenburg P.M.W., Gallivan K., O'Boyle M.F.P.,

The effect of cache models on iterative compilation for
combined tiling and unrolling, Concurrency and Computation:
Practice and Experience, 16 (2004), Issue 2-3, pp. 247-270

[3] Wolfe M., High Performance Compilers for Parallel Computing,
Addison-Wesley, 1996

[4] Kamińska A., Bielecki W., Model for the estimation of the
execution time of parallel program loops, SoftSec 2013

[5] NAS Parallel Benchmarks,
http://www.nas.nasa.gov/publications/npb.html

[6] Wolf M.E., Lam M.S., A Data Locality Optimizing Algorithm,
Proceedings of the ACM SIGPLAN’91 Conference on
Programming Language Design and Implementation, Toronto,
Ontario, Canada, 1991

[7] Stallings W., Computer Organization and Architecture.
Designing for Performance. Sixth Edition, Pearson Education
Inc., 2003

[8] Coleman S., McKinley K.S.: Tile Size Selection Using Cache
Organization and Data Layout, Proceedings of the ACM
SIGPLAN'95 Conference on Programming Language Design
and Implementation, La Jolla, California, USA, 1995

[9] Kamińska A., Bielecki W., Obliczeniowe szacowanie lokalności
danych na poziomie pamięci podręcznej, Metody Informatyki
Stosowanej, nr 4/2011 (29), pp 33-44

[10] Kraska K., Wierciński T., Kamińska A., Obliczeniowe
szacowanie lokalności danych dla programów ANSI-C, PAK, nr
08/2011, pp 951-953

[11] Bastoul C., Cohen A., Girbal S., Sharma S., Temam O,.
Putting Polyhedral Loop Transformations to Work, LCPC’16
International Workshop on Languages and Compilers for
Parallel Computers LNCS 2958, 2003

Authors: mgr inż. Agnieszka Kamińska, Zachodniopomorski
Uniwersytet Technologiczny w Szczecinie, Katedra Inżynierii
Oprogramowania, ul. Żołnierska 49, 71-210 Szczecin, E-mail:
agkaminska@wi.zut.edu.pl; prof. dr hab. inż. Włodzimierz Bielecki,
Zachodniopomorski Uniwersytet Technologiczny w Szczecinie,
Katedra Inżynierii Oprogramowania, ul. Żołnierska 49, 71-210
Szczecin, E-mail: wbielecki@wi.zut.edu.pl

