
PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 90 NR 2/2014 101

Artur SOSNÓWKA

West Pomeranian University of Technology Szczecin

Testware reorganization with help of test city metaphor

Abstract. Error detection within the testware means significant cost and time savings for execution and test maintenance. Both, the cost of
compliance and non-compliance play an important role in the selection of the necessary test. With help of metrics coupled with testware objects and
visualization, clear and easy manner may be presented to various artefacts of available test-data. This paper presents the results of research in test
project in the field of industrial reorganization and optimization of the test database using “test city” visualization metaphor and basic test metrics.

Streszczenie. Wykrywanie błędów w bazie testowej może oznaczać znaczące oszczędności kosztów i koniecznego do ich przeprowadzenia czasu.
Zarówno koszta zgodności jak i braku zgodności odgrywają ważną rolę w doborze koniecznych testów. Za pomocą sprzężonych z obiektami
testware‘u metryk i ich wizualizacji, w łatwy i czytelny sposób mogą zostać przedstawione różne artefakty dostępnych danych testowych. W artykule
przedstawiono wyniki przeprowadzonych badań w projekcie testowym w przemyśle w dziedzinie reorganizacji i optymalizacji bazy testowej przy
pomocy przenośni wizualizacyjej oraz podstawowych metryk testowych. (Reorganizacja bazy testów za pomocą metafory „miasta testów”).

Keywords: Data Mining, Visualization metaphor, Testware, Test City, Test metrics, Test management, Test case visualization, Test
selection.
Słowa kluczowe: Metafora wizualizacyjna, Miasto Testów, Metryki testowe, wizualizacja testów, selekcja testów.

doi:10.12915/pe.2014.02.27

Introduction

Testing, especially regression test-activity, during the
whole Application Lifecycle, aims to find defects correlated
to added, enhanced or adapted system or program
functionality. Testing activity is very important during the
maintenance, when the application or system is already
long time in production. Software maintenance account in
average two-third of the overall application costs [14] and
the regression test is not a small part of the whole
maintenance budget.

Regression testing (or program revalidation) is about to
ensure that no new defects (called regression errors) have
been introduced into previously validated code [12].
Although regression testing is usually associated with
system testing after a code change, regression testing can
be carried out at unit, integration, system or system
integration testing levels.

Fig.1. Activities during software maintenance and regression

testing

The activities that take place during the maintenance

phase can be easily showed as a sequence flow put on V-
Modell [7]. Figure 1 show that after software is released, the
failure reports and the change requests for the software are
compiled in Requirements Management, and the software
is modified to make necessary changes. Component,
system, integration and acceptance tests are carried out for
new functionality for modified parts of the code, while
regression test cases are carried out to test the unchanged

parts of the code that may be affected by the code change.
Those tests are run for all phases and with different scope
at each domain. After the testing is complete, the new
version of the software is released, which then undergoes a
similar cycle.

Regression testing is acknowledged to be an expensive
activity. It consumes large amounts of time as well as effort,
and often accounts for almost half of the software
maintenance costs [12], [11]. The extents to which time and
effort are being spent on regression testing are exemplified
by a study [8] that reports that it took 1000 machine-hours
to execute approximately 30,000 functional test cases for a
software product. It is also important to note that hundreds
of man-hours are spent by test engineers to oversee the
regression testing process; that is to set up test runs,
monitor test execution, analyse results, and maintain testing
resources [8]. Minimization of regression test effort is,
therefore, an issue of considerable practical importance,
and has the potential to substantially reduce software
maintenance costs.

Testware reorganization

In our previous papers we have present an idea for test
cost reduction based on test reorganization with help of
test-city visualisation metaphor. Use of an effective
regression test selection technique within the existing
testware can help to reduce the testing costs in
environments in which a program undergoes frequent
modifications.

Though substantial research results on regression test
selection have been reported in the literature, several
studies [9],[10] show that very few software industries
deploy systematic test selection strategies or automation
support during regression testing. The approaches that are
most often used in the industry for identification of relevant
regression test cases are either based on expert judgment,
or based on some form of manual program analysis.
However, selection of test cases based on expert judgment
tends to become ineffective and unreliable for large
software products. Even for moderately complex systems, it
is usually extremely difficult to manually identify test cases
that are relevant to a change. This approach often leads to
a large number of test cases being selected and rerun even
for small changes to the original program, leading to
unnecessarily high regression testing costs.

What is probably more disconcerting is the fact that
many test cases which could have potentially detected

102 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 90 NR 2/2014

regression errors could be overlooked during manual
selection. Another problem that surfaces during regression
testing stems from the fact that testers (either from the
same organization or from third-party companies) are
usually supplied with only the functional description of the
software, and therefore lack adequate knowledge about the
code to precisely select only those test cases that are
relevant to a modification [13].

Test selection performed on the large testware with
thousands of the test cases is cost consuming and does not
always assure non-existence for obsolete, re-testable and
redundant test cases. Testware size reduction provides
possibility to reduce and more effective usage for test-
resources. In our approach we have per-formed testware
analysis based on test city metaphor in one of the project in
the industry and present the result within this paper.

Visualisation metaphor

A visualization metaphor is defined as a map
establishing the correspondence be-tween concepts and
objects of the application under test and a system of some
similarities and analogies. This map generates a set of
views and a set of methods for communication with visual
objects in our case - test cases [3].

Lev Manovich has said: “an important innovation of
computers is that they can transform any media into
another”. This gives us possibility to create a new world of
data art that the viewer will find as interesting. It does not
matter if the detail is important to the author; the translation
of raw data into visual form gives a viewer possibility to get
information which is the most important just for him. Hence,
any type of visualization has specific connotations, which
may become metaphoric when seen in context of a specific
data source. Metaphor in visualization works at the level of
structure, it compares the composition of a dataset to a
particular conceptual construct, and the choice of any
visualization is always a matter of interpretation.

Numerous currently existing visualization systems are
divided into three main classes:

- Scientific visualization systems [4];
- Information visualization systems [5];
- Software visualization systems [6].
Although all visualization systems differ in purposes and

implementation details, they do have something common;
they manipulate some visual model of the abstract data and
are translating this into a concrete graphical representation.

In this paper we are not aiming to present all possible
visualization metaphors, as this is not the focus for our
research. We would like to show basic and easy to
understand “City metaphor” which is helpful for
representation specific test data and allow easier test
reorganization. After some of the previous research work,
which is however not in focus of this paper, we settled our
first attempt to the metaphor, which is very widely presented
and is a part of Phd from Richard Wettel [2]. In its research
and implementation for software source code classes are
represented as buildings located in city districts which in
turn represent packages, because of the following reasons:

- A city, with its downtown area and its suburbs is a
familiar notion with a clear concept of orientation.

- A city, especially a large one, is still an intrinsically,
complex construct and can only be incrementally explored,
in the same way that the understanding of a complex
system increases step by step. Using an all too simple
visual metaphor (such as a large cube or sphere) does not
do justice to the complexity of a software system, and leads
to incorrect oversimplifications: Soft-ware is complex; there
is no way around this.

- Classes are the cornerstone of the object-oriented
paradigm, and together with the packages they reside in,
the primary orientation point for developers [2].

Fig.2. Example of “Software City” representation of JBoss
application server

In our attempt we perform mapping between available
LLTC Błąd! Nie można odnaleźć źródła odwołania. and
its metrics to provide easy to understand and manage
overview about the current state of testware.

Test metrics
To be able to perform data visualization, defined set of the
static and dynamic data has to be prepared. Based on the
necessary information’s for LLTC we can extract following
basic test metrics, which would be used later for mapping:
- Execution age,
- Execution status,
- Number of executions.
For our work we have established a new system interacting
with several Test Management applications placed on the
market. The base idea of the system is an automation
extraction and pre-evaluation of several different test
metrics. Those metric are imported via available API
connections from the Test Management tool and evaluated
to get required set of metrics. The test metrics are provided
as a text file, e.g. CSV (Comma Separated Values), and
imported into visualization frame-work. Extracted metrics is
to be mapped into the chosen visualization metaphor as:
- Data physical properties (colour, geometry, height map-
ping, abstract shapes)
- Data granularity (unit cubes, building border or urban
block related).
Visualization framework allows us performing necessary
representation for visualized information needed for
Testware Reorganisation.

Testware reorganisation
In our research within test project we were able to perform
testware reorganisation with help of visualisation metaphor.
This allows us to gain information’s which are valuable to
prove our concept and create inputs for further work on
possible visualization usage in test management domain.
In the next few figures we present results our work for test
project with testware structure shown in the tables 1 and 2.
Visualization parameters have been based on following
basic, test metrics:
1. Test execution age mapped to the colour.
2. Number of executions mapped to the height.
To provide real reference to the analysed testware, the
districts (as square groups) of the Test City are mapped to
the structure created by test teams and managed with help
of the Test Management system (e.g. Test folder or Test
object).
The Figures are showing testware characteristics for LLTC
last executions as follows:
 Green execution not older than 370 days
 Red execution older than 370 days

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 90 NR 2/2014 103

Table 1. Testware artefacts in numbers.

Object Type Quantity
Number of
Executions

%
LLTC

%
Exec

LLTC 18293 37899 100,00% 100,00%
LLTC:
exec > 370 days
ago

11769 507 64,34% 1,34%

LLTC:
exec < 370 days
ago

6524 37392 35,66% 98,66%

Table 1 show the visualized artefacts in numbers which has
been as well presented in the Figure 3, 4 and 5.

Fig.3. Project as Test City before reorganization

Fig.4. Project as Test City after reorganization step 1

Fig.5. Project as Test City after finished reorganization

On presented Figures we can recognize how much
reorganization has changed the structure and testware size.

During the reorganization more than 11000 LLTCs has
been moved from its initial location to the archive and after
testware Backup, completely removed from the database.
64% of not anymore used artefacts have been taken out

from the project. This has allowed Test Manager to get very
clean overview about the database and minimize testware
maintenance costs for ~5%.

Testware reorganization has been performed in parallel
with two approaches:

• Manually, through the tester and,
• Automatically, with help of created application
In both cases we have used input from visualization

framework exported as list with LLTC unique IDs and
allocated path within the database.

Table 2. Cost comparison
 Manuall execution Automated

execution
Time max (sec) 120,00 15,00
Time min (sec) 15,00 2,00
Average (sec) 67,50 8,50

Overall (sec) 794407,50 100036,50
Overall (h) 220,67 27,79

Overall (working days) 27,58 3,47
Comparison has showed that automated reorganization

has brought cost savings against the manual approach
equal to 24 working days in case of effort and 26 days in
case of duration. The difference in savings in case of
duration and effort is resulting from 24h working day for
automation and 8h working day for a human.

Conclusions and future work

In this paper we have presented use of method with
help of visualisation metaphor and basic test metrics
combined to perform testware reorganization with small
resource effort. Providing a visual mapping of
correspondence data can be very useful method for
analysis within big and long life projects. Achieved long
term testware maintenance saving of 5% was additionally
followed with eight times faster execution of the
reorganization activities in comparison to traditional, manual
approach. Results have proved usefulness for presented
method in test domain.

Looking at the reorganization results presented at
Figure 5, we can assume that additional improvements
could be potentially done. This work can be a part of future
work .The selection of other than presented metrics and its
relevance for testware reorganization would be very useful
and can be included.

REFERENCES
[1] ISTQB, Syllabus, 2010 -

http://istqb.org/download/attachments/2326555/Foundation+Le
vel+Syllabus+%282010%29.pdf

[2] Wettel, R., 2010, Software Systems as Cities, Doctoral
Dissertation, Faculty of Informatics of the Università della
Svizzera Italiana

[3] Buffaker, B., Hyun, Z., Luckie, M., 2010, IPv4 and IPv6 AS
Core: Visualizing IPv4 and IPv6 Internet Topology at a
Macroscopic Scale in 2010,
http://www.caida.org/research/topology/as_core_network/

[4] Friendly, M., 2008, Milestones in the history of thematic
cartography, statistical graphics, and data visualization,
http://www.math.yorku.ca/SCS/Gallery/milestone/milestone.pdf

[5] González, V., Kobsa, A., 2003, Benefits of Information
Visualization Systems for Administrative Data Analysts,
Proceedings. Seventh International Conference, 331-336,
Information Visualization, IV 2003

[6] Stasko, J.T., Patterson, C., 1992, Understanding and
characterizing software visualization systems, Proceedings.,
1992 IEEE Workshop, 3 – 10.

[7] Barry W. Boehm: Software Engineering Economics, Englewood
Cliffs, NJ, Prentice-Hall, 1981. ISBN 0-13-822122-7

[8] H. Do, S. Mirarab, L. Tahvildari, and G. Rothermel.The effects
of time constraints on test case prioritization: A series of
controlled experiments. IEEE Transactions on Software
Engineering, 36(5):593–617, September 2010.

104 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 90 NR 2/2014

[9] M. Grindal, J. Offutt, and J. Mellin. On the testing maturity of
software producing organizations. In TAIC-PART ’06:
Proceedings of the Testing: Academic & Industrial Conference
on Practice And Research Techniques, pages 171–180, 2006.

[10] J. Guan, J. Offutt, and P. Ammann. An industrial case study of
structural testing applied to safety critical embedded software.
In Proceedings of the 2006 ACM/IEEE international symposium
on Empirical software engineering, pages 272–277, 2006.

[11] G. Kapfhammer. The Computer Science Handbook, chapter on
Software testing. CRC Press, Boca Raton, FL, 2nd edition,
2004.

[12] H. Leung and L. White. Insights into regression testing.In
Proceedings of the Conference on Software Maintenance,
pages 60–69, 1989.

[13] A. Pasala, Y Fung, F. Akladios, A. Raju, and R. Gorthi.
Selection of regression test suite to validate software
applications upon deployment of upgrades. In 19th Australian
Conference on Software Engineering, pages 130–138, March
2008.

[14] R. Pressman. Software Engineering: A Practitioner’s Approach.
McGraw-Hill, New York, 2002.

Author: mgr. inż. Artur Sosnówka, Zachodniopomorski Uniwersytet
Technologiczny Szczecin, ul. Żołnierska 49, 71-210 Szczecin, E-
mail: arsosnowka@wi.zut.edu.pl;

