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Threshold sharing scheme for large files 
 
 

Abstract. The known threshold sharing schemes applied directly to large secret files are ineffective and dangerous. Ineffectiveness of standard 
methods results from the need to generate and store a large number of shadows. In turn, the low security level of standard methods may be caused 
by not taking into account the properties of large files, such as file format and multiple reduplication of the same information contained in it. The 
paper proposes a new threshold secret sharing scheme, intended to distribute the large secret files. Due to used obfuscation techniques the 
proposed scheme prevents the reduction of the privacy threshold and thereby increases its security level. This technique is realized in three 
consecutive stages, the message expansion, linking and permutation using Rivest permutation polynomial. Splitting file into multiple groups with the 
same number of subsecrets strongly reduces the number of generated and stored shadows and in effect our scheme requires less storages as well 
as computing time. The Vandermond matrix is used on the stage of message recovery.  
 
Streszczenie. Schematy podziału progowego zastosowane bezpośrednio do dużych plików są nieefektywne i niebezpieczne. Niska wydajność tych 
metod wynika z konieczności generowania i przechowywania dużej ilości cieni. Brak bezpieczeństwa związany jest z właściwościami dużych plików, 
takimi jak znany format pliku czy potencjalne wielokrotne powtórzenie w pliku tych samych fragmentów informacji. W artykule zaproponowano nowy 
schemat podziału progowego sekretu przeznaczony do dystrybucji dużych plików. Dzięki wykorzystaniu mechanizmów zaciemniania i wiązania 
proponowany schemat zwiększa poziom bezpieczeństwa podziału. Technika ta realizowana jest w trzech kolejnych krokach: rozszerzeniu 
wiadomości, jej wiązaniu i permutacji z wykorzystaniem wielomianów permutacyjnych Rivesta. Podział pliku na grupy zawierające te samą liczbę 
sekretów zdecydowanie zmniejsza liczbę generowanych i przechowywanych cieni, w wyniku czego zmniejszają się wymagania związane z 
miejscem przeznaczonym do ich przechowywania jak i czasem potrzebnym do wykonania niezbędnych obliczeń. Na etapie odtwarzania wiadomości 
wykorzystywana jest macierz Vandermonda.(Progowy schemat podziału dużych plików) 
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1 Introduction 
 Secrets, such as cryptographic keys, need a special 
protection. In these specific cases a secret m is partitioned 
into n shares (shadows) which are shared among n 
members (shareholders) belonging to the set P. The secret 
sharing is implemented in such a way that in order to 
reconstruct the secret the knowledge of a threshold number 
of shares is necessary. In other words, the secret can be 
reconstructed only by a certain group of authorized 
shareholders A  P. Any unauthorized group should not be 
able to reconstruct this secret. A collection of all subsets of 
P, which contain users only authorized to reconstruct the 
secret is usually described as the access structure of the 
secret sharing scheme. 
 Secret sharing schemes have been independently 
introduced by G. R. Blakley [1] and A. Shamir [2] to 
effectively solve the problem of cryptographic keys 
protection.  In both schemes, denoted as (t, n), the secret m 
is distributed among n participants in such a way that to its 
reconstruction the knowledge of at least t shadows is 
required, i.e. the cardinality of a set of authorized 
participants A  P must be greater than or equal to t ( |A| ≥ 
t). In Shamir’s scheme the Lagrange interpolating 
polynomial is used to reconstruct the secret, while in 
Blakley’s scheme - the method of linear projective 
geometry. These types of schemes allow the subject named 
dealer to distribute the secret m (in the form of shadows) 
between n entities and next reconstruct it when the dealer 
receives at least t shadows. 
 In practice, however, it may be necessary to generate 
shadows on a base of long secret, which may be treated as 
the set of the secrets M = {m1, m2, ..., mk}. The simplest, 
naive solution is to use (t, n) threshold scheme repeatedly 
for each subsecret mi  M. Such an approach is inefficient 
because of the need to generate shadows, whose number 
is a multiple of shadows for a single secret (e.g. a multiple 
of k in the case of k secrets) [3]. In order to avoid this 
problem so called multi-secret sharing schemes are used. 
In these schemes multiple secrets are protected using the 
same amount of data usually needed to protect a single 

secret. According to W. A. Jackson, et al. [4] multi-secret 
sharing schemes can be divided into two classes: onetime 
use schemes and multiple use schemes. In onetime use 
scheme after each secret reconstruction the secret holder 
must change the sharing scheme for new secrets (because 
a secret holder should usually assumed that each secret 
reconstruction means that it becomes publicly known), and 
next redistribute fresh shadows to every participant. Multiple 
use schemes are devoid of this defect , because every 
participant needs to keep only one secret shadow, even 
when there is a need for distribution/redistribution of new 
secrets (i.e., many secrets can be shared independently 
without refreshing the secret shadow). 
 There are several schemes designed especially for 
multi-secrets distribution (e.g., see N. Y. Lee, et al. [5], 
J. He and E. Dawson [6, 7], H. Y. Chien, et al. [8], 
C. C. Yang, et al. [9] and Y. J. Geng, et al. [10]). Generally, 
all these schemes are based on one-way functions 
(L. Gong [11]). A few schemes allow secret reconstruction 
only in stage-by-stage way (reconstruction in predetermined 
order), others provide mechanisms for simultaneous 
reconstruction of multi-secret. Among the secret sharing 
schemes of this latter type most interesting are proposals of 
H. Y. Chien, et al. [8], C. C. Yang, et al. [9] and L. J. Pang, 
et al. [12].  
 One of this schemes variant, where the secrets are 
reconstructed simultaneously, is the solution described by 
the H. X. Xian, et al. [13]. The sharing of k secrets requires 
in this scheme only one n-th degree polynomial (the size of 
n does not depend on the number of secrets), which is used 
to distribute the first secret m1. For other secrets only the 
values of i2, k: m’i=m1mi is published. When the secret 
m1 is reconstructed then it is easy to find the remaining k – 1 
secrets. It should be noted that in this secret scheme the 
first secret m1 is used k-times, so to make the cryptanalysis 
harder all secrets should be about the same size in bits. 
 All above schemes can be applied to any set of secrets 
M, whose cardinality is not a big order, and the secrets are 
not repeated. These conditions are difficult to meet for files 
containing, for example, electronic documents. File sizes 
are usually large and it is difficult to guarantee that certain 
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fragments of the document, such as headers of business 
documents, will not be repeated and publicly known. Direct 
application of the above multi-secret sharing schemes 
requires the sharing of the file into g groups, each 
containing k elements (corresponding to k secrets of set M). 
With this approach, each group of k elements must be 
treated as an independent secret, for which another secret 
sparing polynomial should be generated. In such a case 
thresholdness property is kept in relation to single groups 
only, not to whole complex secret. In practice the 
reconstruction of k elements (even belonging to different 
groups) allows for the reasoning about the next groups and 
their components (e.g., based on a known message format 
or its well-known header). 
 Another threat is the possibility to change the proper 
order of the published values related to the different groups. 
Replacing the order of these values may prevent proper 
reconstruction of the file content. It is important to note that 
mentioned above multi-secret sharing schemes are not 
resistant for such a manipulation. 
 The rest of this paper is organized as follows. In Section 
2 is briefly described a generalization of Shamir scheme, 
which is the basis for most of the known multi-secret 
sharing schemes, including our proposal. Section 3 
contains the detailed explanation of our schema, i.e. basic 
assumption and step-by-step description of shadows 
generation process (including also the obfuscation 
mechanism). Description of the reverse process – the 
reconstruction of a secret on the basis of the authorized set 
of shadows - was described in Section 4. Final conclusions 
can be found in Section 5. 

2 Generalization of Shamir’s Threshold Secret Sharing 
Scheme 
Let tp is the privacy threshold describing the maximum 
number of shareholders that cannot determine the secret. 
On the opposite side we define tf - the fault-tolerance 
threshold - the minimum number of shareholders that are 
needed to recover the secret. For a basic version of the 
Shamir’s scheme the difference between tf and tp is 1. A (t, 
n) secret sharing scheme is a set of two functions, a sharing 
function and a recovering function. The probabilistic sharing 
function takes as an input the secret belonging to some 
finite set of secrets M and returns for this secret n shares as 
an output. In turn, the recovering function is a deterministic 
algorithm which recreates the message from some or all of 
the shares. 
 Assume Fp is a finite field of order p, where p > n is a 
large prime number. Assume also that the fault-tolerance 
threshold should be equal to t = tf = tp + u. Value u ≥ 1 
denotes the number of secrets to share at the same time 
(belonging to the set M ). Selected secrets create the set 
{m1, … , mu}  M. We randomly choose t – u coefficients {β1, 
… , βt-u}  Fp and creates random polynomial of t – u – 1 
degree Q(x) = β1x

u + β2x
u+1 + … + βt-ux

t-1 (mod p). Finally we 
define generalized Shamir’s polynomial of t-1degree, which 
may be used to share u secrets: 

(1) ))(mod(...)( 1
21 pxQxmxmmxh u

u    

It is necessary to ensure the confidentiality of coordinates 
for which the shares are generated on the basis of above 
polynomial. Let’s recall, due to this type of the requirement, 
the definition of a two-variable one-way function (see, J. He, 
E. Dawson [6] and C. C. Yang, et al. [9]). 

Definition 1 The two-variable one-way function f(r, v) is a 
function that maps any r and v onto a bit string f(r, v) of a 
fixed length. This function has the following properties: 

(a) given r and v, it is easy to compute f(r, v), 

(b) given v and f(r, v), it is hard to compute r, 
(c) having no knowledge of v, it is hard to compute f(r, v) 

for any r, 
(d) given v, it is hard to find two different values r1 and r2 

such that f(r1, v) = f(r2, v), 
(e) given r and f(r, v), it is hard to compute v, 
(f) given pairs of ri and f(ri, v), it is hard to compute f(r′, 

v) for r′ = ri. 

Suppose then, that the secret holder randomly chooses n 
values v1, v2, ..., vn and distributes them amongst them over 
a secret channel. Generated values V = {v1, v2, ..., vn } are 
the secret shares and allow each of i-th authorized 
participant to calculate the value of the function f(r, vi). After 
the distribution of V, the secret shadows holder executes 
the following steps: 

(a) randomly chooses an integer r and for (t-1)-th 
degree polynomial h(x) from Equation (1) compute yi 
= h(f(r, vi)) mod p for i = 1, 2, …, n, 

(b) publishes {r, y1, y2, …, yn} in any authenticated 
manner, e.g. using Merkle tree (generally, as 
authenticated dictionary, see for example M. T. 
Goodrich [5]). 

In order to reconstruct the group of secrets {m1, … , mu} at 
least t shareholders should deliver their pseudo shadow f(r, 
vi). Using a (t−1)-th degree Lagrange interpolation 
polynomial, the knowledge of t pairs (f(r, vi), yi) is sufficient 
to determine all coefficients of the polynomial (1) and to 
reconstruct secrets. 

3 Our scheme 
 Suppose we are given a large size file, which will be 
treated further as a plain message M, the content of which 
should remain secret. The secret holder chooses arbitrarily 
large prime number p, being the degree of the finite field Fp. 
Next, a public message is divided into k blocks M = {m1, … , 
mk}, each of the size less then p size in bits i1,k: mi < p. 
Each block should be treated as a separated sub-secret. 
Note that the number of blocks (k value) is large. Message 
should be prepared before the final sharing – modification 
covers message expansion, blocks linking and permutation.  

3.1 Message obfuscation 
 The secret holder generates a random number r from 
Fp, which will be used later for the two-variable one-way 
functions. Next the ring Zq is chosen for Rivest permutation 
polynomial (see R. L. Rivest [15]), where q = 2w. The value 
of the variable w is the smallest value that satisfies the 
inequality 2w ≥ k + 1, namely w = log2(k + 1).  
 The secret holder expands the message M to the 
message L complementing it with random values to q 
blocks: L = {l0, … , lq-1}, where l0 = k , i1, k: li = mi and 
i(k,q): li  Fp (random values from Fp). 
 All blocks of expanded message L are linked in a form 
of chain. XOR operation and the two-variable one-way 
function f are used for this purpose. The process starts from 
the last block with a randomly chosen initialization vector IV. 
All linked blocks create together the new message O = {o0, 
… , oq-1}, where oq-1 = lq-1  f(r, IV) and i0, q–2: oi = li  
f(r, oi+1). 
 Then the d-th degree permutation polynomial is 
arbitrarily chosen: P(x) = a0 +  a1x + … + adx

d (mod q). The 
secret holder generates random coefficients {a0, … , ad} 
which satisfy the Rivest’s conditions: a1(mod 2) = 1  (a2 + a4 
+ a6 + …)(mod 2) = 0  (a3 + a5 + a7 + …)(mod 2) = 0. This 
particular polynomial P(x) is used to change the order of 
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message O blocks. Permuted blocks creates a new 
message C = {c0, … , cq-1}, where i0, q): ci = op(i). 
 First of all the obfuscation technique presented above is 
used to protect the correct order of message blocks. Next 
purpose is to eliminate possibility of partial message 
recovery, which could be considered as a violation of 
thresholdness property on the level of the entire message M 
(separately recovered blocks potentially could allow 
inference about content of other blocks). Such a solution 
ensures that the reconstruction of any part of the message 
M without reconstruction of all others parts is impossible. 
This technique is presented on figure 1 and is realized in 
three consecutive stages: an expansion, a linking and a 
permutation. The resulting encoded message C is then 
partitioned into shadows and distributed as specified below. 

 
Fig.1. Obfuscation technique used for large message M. 

3.2 Gathering block into groups 
 The secret holder divides prepared message C into g 
disjoint groups  C = C1  C2  …  Cg. Each group consists 
of the same number of following blocks:  i1, g: z = Ci 
= q / g, maybe except the last groupCg =  q – C1(g – 1). 
The content of single group is denoted as follows: i1, g: 
Ci = {bi,0, bi,1,… , bi,z-1}, where i1, g, j0, z): bi,j = c(i-1)z+j.  
 For each i-th group the separate polynomial of degree t-
1 > zi should be generated to distribute secrets. The 
structure of this polynomial corresponds to the polynomial 
of Equation (1) for u=z.  
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1,,1,0, pxbxbxbbxB t

ti
z

ziiii
i

i


  

 The coefficients {bi,z, bi,z+1,… ,bi,t-2} of the distribution 
polynomial (2) are randomly chosen from the Fp. Optionally 
the highest coefficients bi,t-1 may be chosen in other way. 
We should store and keep in secret coefficients of 
permutation polynomial and coefficients bi,t-1 of distribution 
polynomial may be treated as good place for hiding of this 
information. In such a situation the coefficients of 
permutation polynomial are treated as secrets and split into 
shadows which is hidden in bi,t-1 (see Equations (3) and (4)). 
This requirement means in practice that before we are able 
to recover the message we must first obtain information 
about the coefficients of the permutation polynomial. Given 
the above, for the j-th coefficient of permutation polynomial 
(where j0, d – 1) the coefficients at the highest power of 
distribution polynomial are calculated according to the 
following scheme: 
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where the value of e is determined from the following 
equation: 

(5) 








1d

g
e  

Note that the last coefficient ad of the permutation 
polynomial will be used to generate the coefficients at the 
highest power of the distribution polynomials starting from 
Bde+1(x) up to Bg (x). All coefficients calculated according to 
formulas (3) and (4) form a set {b1,t-1, b2,t-1,… ,bg,t-1}. 

3.3 Shadows generation and distribution  
 Shadows are generated for n > t shareholders. For each 
i-th participant the secretholder generates a random value vj 
and distributes over a secret channel. These values can be 
generated for a single session (for one message 
distribution), as well as for several successive sessions. 
 Next, the secret holder calculates the shadows for each 
group. The shadow yi,j  calculated for the i-th group and j-th 
participant has the following form: 

(14) ))v,r(f(By,n,1j,g,1i jij,i   

where f(...) is the two-variable one-way function. Every j-th 
participant receives the values {t, g, d, q, m, r, Yj} over an 
unsecured channel, where Yj = {y1,j, …, yg,j }. 
 On the basis of information received from the secret 
holder any participant is able to prepare the final form of the 
shadows Sj = {s1,j, …, sg,j}, where si,j = {xi,j = f(r, vj), yi,j}. As 
the result the following array of shadows is potentially 
available (distributed amongst all participants): 
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In summary, each j-participant keeps in secret Sj vector and 
some additional information {t, g, d, q, m, r, Yj}.  

4   Message reconstruction 
 It is obvious that at least t shadows for each group is 
required to reconstruct complete message. We may 
assume that shadows for each reconstructed group are 
collected from the same participants for simplicity, but it’s 
not necessary. As an analogy to matrix S (see Equation (6)) 
we can present collected shadows in the form of the matrix 
S':   
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where	s’i,j = {x’i,j = f(r, vj), y’i,j}. The shadows can be always 
delivered by the authorized group of t (t ≤ |A|) participant 
belonging to the set A  P({1, 2, ..., n}). 
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4.2   Reconstruction of distribution polynomials  
 Using the matrix S’ we create the Vandermonde matrix 
for each i-th group: 

(8)
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which allows us to reconstruct a set of coefficients of the 
distribution polynomial for each group of messages i1, 
g: {b’i,0, b’i,1, …, b’i,t-1} = Vi

-1  {y’i,1, y’i,2, …, b’i,t}. 

4.3 Reconstruction of the permutation polynomial 
 From the set of reconstructed coefficients of (t-1)-th 
degree distribution polynomial (see Equation (2)) we 
choose those that form the set {b’1,t-1, b’2,t-1, …, b’g,t-1}  
containing coefficients standing at the highest power of this 
polynomial. These coefficients can be used to reconstruct a 
permutation polynomial. On the basis of the values of g and 
d the value of e’ is calculated (see Equation (5)), and then 
the permutation polynomial P’(x) = a’0 +  a’1x + … + a’dx

d 
(mod q) reconstructed: 

(9) 1,')1(1,1' '...'',1,0   tejtjej bbadj  
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4.4   Reconstruction of the original message  
 For the given values of g and q we compute the 
cardinality of the first (g-1) groups of messages (this 
cardinality is equal to z’ = q / g, and then rebuild an 
obfuscated message by making it to be equal to the 
appropriate coefficients of the distribution polynomials C’ = 
{c’0,… , c’q-1}, where 


)'(mod,

1
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 Now, using reconstructed permutation polynomial P'(x) it 
is possible to restore the original order of message blocks 

O’ = {o’0, …, o’q-1} where 
)i('pi 1'c'o,m,0i  and to 

suppress the linking introduced in the first stage of the 
message obfuscation L’ = {l’0, …, l’q-1} while l’q-1 = o’q-1  f(r, 
IV) and i0, q–2: l’i = o’i  f(r, o’i+1).  
 Block l’0 is nothing more than the number of blocks in a 
plain message before its enlargement, so finally we get the 
reconstructed message M’ = {l’1, l’1,… , l’k’} where k’ = l’0. 

5. Conclusions 
 In the paper, we propose a new (t, n)-threshold multi-
secret and multi-use sharing scheme based on Shamir's 
generalized scheme. Unlike other known solutions the 
proposed scheme can be used primarily to spreading very 
large files (messages) between the n shareholders. The 
files do not usually contain the well formed secrets, and this 
property means that the information in the file may be 
repeated. In this case, the privacy threshold can be equal to 
tp = t - z, where z is the number of well-known parts of some 
or all information groups created for a large secret file (see 
Section 3). 
 In our scheme, the obfuscation and linking mechanisms 
prevent the reduction of the privacy threshold, because 
these mechanisms allow to recover the file content only 
after its entire reconstruction. Since this is possible only if at 
least t authorized holders will share their pseudo-shares, 
therefore the privacy level for each recovered group of 
secrets has value tp = t - 1 and the fault-tolerance threshold 
is equal to the threshold value, i.e. tf = t. This means that the 
overall privacy level for the large file with g groups of secret 

is equal tptotal = gt-1, while tftotal = gt. Note, that these values 
are optimal like for the (gt, gn) multi-secret sharing scheme. 
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