
PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 90 NR 2/2014 117

 Pawel JANCZAREK1, Janusz SOSNOWSKI1

Warsaw University of Technology (1)

Monitoring Software Development and Usage

Abstract. This paper presents the methodology of monitoring software testing and debugging processes during system development and usage. We
concentrate on control metrics related to these problems and consider two development models related to practical projects. Basing on the collected
data we show the usefulness of the presented approach to control software quality, the effectiveness of development and maintenance processes.
We also outline possible improvements in monitoring schemes.

Streszczenie. Artykuł przedstawia metodykę monitorowania procesów testowania i korekcji błędów w fazie rozwijania i eksploatacji
oprogramowania. Praca koncertuje się na miarach opisujących te procesy w odniesieniu do dwu modeli wytwarzania oprogramowania
wykorzystywanych we wdrożonych projektach. Bazując na zebranych danych przedstawiono użyteczność opracowanego podejścia w kontrolowaniu
jakości oprogramowania oraz efektywności procesów jego wytwarzania i utrzymania. Wskazano również możliwości poprawienia efektywności
procesów monitorowania. (Monitorowanie rozwijania i eksploatacji oprogramowania).

Keywords: monitoring bug reports, software reliability, software metrics, testing.
Słowa kluczowe: monitorowanie raportów o błędach, niezawodność oprogramowania, metryki, testowanie.

doi:10.12915/pe.2014.02.31

Introduction

Software reliability is still a challenging problem for
software development firms. There is a very reach literature
devoted to various aspects of this problem. It covers
specification of development and maintenance processes
[1], various metrics and models in software quality
engineering [2], sophisticated reliability modelling and
improvement techniques [1,3-5], etc. They can be treated
as guidelines or even standards for some application
domains for developers, testers, etc. Many of these
techniques involve monitoring various measures, analysing
their impact on quality factors and on development or
maintenance effectiveness. In practice, direct usage of the
proposed techniques faces some limitations.

In general, we distinguish control and product software
metrics. Control metrics are associated with software
processes, e.g. number of detected defects, defect
repairing times, defect severity, testing times, program
changes, updates, etc. Product metrics characterize
software complexity (e.g. cyclomatic complexity, lines of
code, number of classes and associated methods, length of
identifiers, depth of nesting). Product metrics can be useful
in performing various predictions, e.g. the required person
days needed to develop a system component. Additionally
we can introduce operational profile metrics characterizing
usage of the software. All these metrics can be used in
project management decisions and quality evaluation
(identification of bottlenecks in processes, problematic
modules, prediction of needed resources to achieve the
final goal, etc.).

Unfortunately, practical results of software metrics and
their analysis related to real projects are rarely encountered
in the literature. Moreover, various companies use different
development and testing schemes or policies. Developed
projects may have stable or changing specifications and
are based on various technologies, e.g. developing own
programs or integrating commercial components. All this
has a big impact on the interpretation of monitored
measures. We faced these problems in several projects.

The goal of this paper is to present our experience in
monitoring different classes of projects. It is based on the
available data which was collected according to
development policies (mostly control metrics).
Nevertheless, this allowed us to evaluate the practical
significance of this data and derive possible extensions or
improvements. In the considered projects we had a wide
access to the so called problem reports. Here, we faced
development schemes not consistent with classical

software reliability modelling assumptions. However, they
can be considered as typical for many developers.

The paper outlines the scope and policies of problem
reports. This is followed with some statistical and analytical
results. Basing on these results we discusses possible
enhancements, such as inclusion of event and performance
logs. Final remarks are given in the conclusion.

Control metrics in software life cycle

Most software development companies monitor the
effectiveness of the involved processes and product quality
using commercial or their own tools. Typically, they assure
dynamic collection of some selected metrics during program
testing, debugging and after the system has gone into use.
The collected data is introduced in a more or less structured
form of reports generated by people involved in various
processes (e.g. testing, defect repairs, users,
administrators, managers). Unfortunately, in many cases
too much freedom is allowed in this reporting, which results
in hidden information or imprecise data accuracy. An
important issue is to correlate this data with system
releases and versions.

In our considerations we concentrated on testing,
debugging and maintenance phases of software life cycle.
Our experience relates to two models of software
development: A – development phase followed by testing,
debugging and then operation combined with maintenance,
B – incremental development with interleaved phases and
releasing partial solutions (e.g. comprising specific
functions) to the users. In both models testing is performed
by people not involved in development. In the case of model
B we can also distinguish the stabilized phase of operation
and maintenance (related to the final release comprising all
functionalities). We take also into account a third model C
which is related only to operational and maintenance phase
of stable (matured) projects.

In general, the documentation of the realized processes
within the considered models may differ on the accuracy of
reports (time stamp resolution, comprised information,
sources of the reports, etc.). These reports can be used to
derive appropriate software metrics. In the simplest case we
have reports specifying time stamps of detected faults
(possibly with the severity level). This is typical to most
software reliability growth models described in the literature
[3,5-7] and it is consistent with our model A.

In the case of model B problem reports are much more
informative and accurate. In particular, they comprise the
following data: problem ID, ID of problem provider, system

118 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 90 NR 2/2014

release and module ID, problem registration time stamp,
problem severity, release window (RW), problem detection
environment (testing, production phase), problem solution
progress, problem closing date, problem closing reason,
problem description.

In the analysed systems 5 severity levels have been
distinguished (user oriented approach): PS1 - the lowest
level related to cosmetic defects (they do not influence
system functionality, mostly relate to some inconveniences),
PS2 – functional minor problems which can be overcome by
the users (involving more laborious activities, e.g. based on
other available functionalities), PS3 – relates to some
functionality problems which create significant
inconvenience for the users, PS4 - relates to significant
functionality problems which cannot be handled by the
users, PS5 – critical problems related to unavailability of
basic and fundamental functions, the consequences are
severe, e.g. business losses. Depending upon the goal of
analysis we can also introduce other categorization, e.g.
recoverable defects, non-recoverable defects with various
levels of losses (short term or long term system crashes,
data or control losses, financial losses such as incorrect
billings, wrong account states).

Reports related to model C can be considered as some
subset of those for model B. In particular, they are less
accurate and can provide basic information (from the user
point of view) on problem appearance and resolution times.

Problem reports can be correlated with test schemes
(test cases). They can be attributed to individual testers and
characterised by execution reports comprising starting and
termination time stamp supplemented with the test result:
passed or unsuccessful (optionally specified ID of the
registered problem). The derived dynamic metrics can be
referred to some static metrics, e.g. planned time schedule
of release windows, scheduled test advancement.

The derived metrics can be used to evaluate system
reliability, project progress, identification of development
bottlenecks or risks, reallocation of resources to achieve
successful goal. Interpreting derived metrics it is reasonable
to take into account the context of their registration and
collection. In particular, we should be conscious of the
execution profile (during testing or operational phases),
problem registration schemes (accurate individual or
periodical summarized reports), the number, engagement
and skills of information providers.

In the sequel we give a sample of monitoring results for
the 3 models related to software projects handling data
bases and outline the appearing problems, in particular
inconsistencies with classical analysis models.

Analysing monitoring reports

Analysing test and problem reports of some commercial
software projects we checked the possibility of deriving
some features characterizing reliability (quality) issues as
well as the effectiveness of the related software production
and maintenance processes. This analysis is referred to 3
project models (compare the previous section).

In the case of model A the available data was limited to
precise dates of detected problems during testing phase
and problem severity. So practically it allowed us to derive
software reliability growth models (SRGMs). These models
evaluate the improvement of program reliability in function
of testing results (e.g. time between subsequent faults,
number of faults in time intervals). In the literature many
SRGM models have been proposed with different
assumptions [3-5], quite often they are not consistent with
real software development schemes. In particular, they
estimate m(t) - expected number of errors detected by time
t basing on a history of error detection till some time ta<t.

Basing on test data of project A (cumulative number of
detected errors in subsequent days - fig. 1) we have derived
several SRGM models compatible with the test scenario
and evaluated the predicted total number of faults in the
system in the range [547-582]. For an illustration we
present one of these models - S-shape Pham Nordman [3]:

(1) m(t) = {[1-exp(-bt)](1 - /b) + at}/(1 + exp(-bt))

the derived parameters are as follows [8]: a=310.94,
b=0.077, = 0.0068, = 11.92. Hence, for t→ ∞ we get 550.
In fact, after 2 years of using this application total number of
registered faults was 576, so the prediction was quite good
and confirmed that 113 days of testing was reasonable. It is
worth noting that considered S-shape models take into
account so called learning phase of testing, which was
important in this project (simple models, e.g. Goel Okumoto
[8] provided wrong predictions over 800 faults).

Fig.1. Cumulative number (y axis - [0-600]) of detected errors for
113 days (model A)

a) problems registered by testers (y axis – [0,1200])

b) problems registered by users (y axis – [0,250])

Fig. 2. Cumulative number of registered problems within 71 days
(model B)

In general, it is not easy to satisfy assumptions of popular
SRGM models (e.g. immediate fault repair, stable testing
rate, perfect debugging [9]). Recently, interleaving
development with testing and operation phases occurs quite
frequently, moreover we have access to more interesting
data (e.g. time of resolving problems). Hence, more
comprehensive analysis can be performed. This is the case
of model B (see the previous section). Here, deriving SRGM
models is much more complicated. In fact, we have a
common repository of problems detected by testers and
users, moreover they may relate to different system revisions.
For an illustration in fig. 2 we give plots of the cumulative
number of registered problems (within 71 weeks) filtered out
for testers and users. A combined summarized plot could be
intractable. We can observe shape fluctuations in the plots

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 90 NR 2/2014 119

related to subsequent releases (marked with arrows),
moreover users deal with tested revisions so appropriate time
shift of the two plots is visible. Hence, in practice we have
derived separate SRGM models for testers, users and
releases. They allowed us to evaluate the reliability features.

The relatively reach problem repository allowed us to
derive more interesting features characterizing the production
processes. In particular, we could derive the number of open
problems (needing debugging) in time periods (e.g. weeks).
This feature illustrates the load of debuggers, for the
considered project we give this in fig. 3. Here, we see some
increasing trend at the end, the project manager activated
more debuggers to resolve the appearing bottleneck.

Fig. 3. Open problems (0-70) registered by the users in 111 weeks

Dealing with debugging we are more interested in
problem resolution time. In tab. 1 we give some statistics of
problem resolution for one of the projects of model B. This
statistics relates to lowest (PS1) and highest (PS5) severity
problems (reported by testers).

Table 1. Problem resolution time statistics
days 0-10 10-20 20-30 30-50 50-70 70-90 >90

PS1 454 213 165 94 35 19 8
PS5 52 22 13 25 23 5 3

Most problems have been resolved relatively fast
(several days). Nevertheless, some needed much more
time or were treated as less important. Moreover, some
have been handled with long delays by external providers of
imported components.
 Distribution of problem severity may differ upon the
system. This is illustrated for a sample of 11 systems in fig.
4. It is worth mentioning that problems reported by testers
usually have higher percentage of high critical problems
than those reported by the users (they deal with debugged
versions).

Fig. 4. Fault severity distribution for 11 systems

 In practice, we can monitor not only problem reports and
their solution progress but also details of test execution. In
particular, we can trace the effectiveness of problem
detection for various test approaches e.g. module tests,
integration tests, acceptance tests, etc. Further, we can
trace the contribution of each tester or user (however this
should be correlated with their activity). In some projects
testing process is carefully planned with predesigned test
scenarios comprising explicitly specified test cases. Here,
the project manager can check the difference between the
scheduled and performed test advance (in per cent). In fig.
5 this is illustrated for one test scenario of a project. There

is some difference between the scheduled (upper plot) and
performed tests (lower plot). Within the performed tests we
can also distinguish unsuccessful tests i.e. such that could
not be executed due to some inconstancies of the
environment, etc. Moreover, we can display also the
number of passed and non-passed (problem detected)
tests. Please note flat periods in the plots of the scheduled
progress related to weekends.

Fig. 5. Monitoring test progress (0-100%) within 5 weeks

 Monitoring maintenance phase (model C) is an
important issue due to serviceability and warranty problems.
Here, we can use similar problem repository, however it is
filled by the users. Moreover, the frequency of appearing
problems is much lower than during the development
phase. We can also derive software reliability growth
models assuming that the registered problems are resolved
(eliminated) by the software provider. However, the
collected data is usually not so abundant as in the previous
phases. An important issue is to trace problem resolution
time. We illustrate this for some project with data on
registered problems and their resolution time (fig. 6). From
the user point of view more interesting is the distribution of
problem resolution time. The more, that it can be an issue
of warranty agreement e.g. specification of maximal waiting
time for problem resolution. In practice, we can have
projects with various service quality levels. In tab. 2 we give
distributions of problem resolution for 3 projects of different
service levels (SL1 – SL3: with SL1 the lowest level i.e. the
highest service time). Here, we have distinguished 6 ranges
of service time and gave the number of attributed problems
(NP) related to appropriate ranges.

a) y axis - [0-50] problems

b) y axis - [0-0.3] days

Fig. 6. Maintenance statistics for 12 months: a) cumulative number
of registered problems, b) problem resolution time

Having analysed reports of problems during
maintenance of a matured product we have noticed
relatively low frequency of problems. Moreover, most
problems have been resolved by some administration and
configuration actions specified by the service desk, so the
response time was really short. More severe problems
needing code modifications were very rare and primarily
resolved by intermediate ways.

120 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 90 NR 2/2014

Table 2. Distribution of service times (NP – number of problems)
SL1 SL2 SL3
days NP hours NP hours NP
[0-2)
[2-4)
[4-6)
[6-8)
[8-10)
[10-12)

60
22
10
3
2
2

[0-2.4)
[2.4-5.0)
[5.0-7.5)
[7.5-14)
[14-16.5)
[16.5-19)

44
6
2
0
1
1

[0-1.2)
[1.2-2.4)
[2.4-3.6)
[3.6-5)
[5- 6)
>6.0

35
4
2
1
2
0

Enhancing monitoring schemes

The gained experience with several software projects
performed according to different development and testing
schemes revealed drawbacks of used monitoring policies.
They relate to report accuracy, lack of metrics
characterizing profiles of testers or users and their
engagement, lack of metrics characterizing project
complexity starting from the requirements specifications to
distribution of code sizes on modules, versions, updates,
etc. Moreover, some metrics of debugging complexity (e.g.
per cent of modified code) could be added. In the analysis
we have to take into account planned revision windows and
unplanned (asynchronous) updates. The problem reports
should specify clearly transition moments of different
phases of problem handling (e.g. diagnosis, resolving).

Analysing the contents of problem descriptions we have
found that they are specified in a very free form, mixing
Polish and English words, technical jargon, hermetic texts
difficult to understand by people not knowing the tested
system in details. This makes difficult automatic text mining
to classify problem symptoms and solution methods which
could be useful in developing service desk repository.
Hence, more formalized problem reports are advisable.
Quiete often diagnosing (revealing) the source of problem
required exchanging emails or telephone calls with the
testers and users, even more some screen shots or
excerpts from application logs are included. This
information usually is skipped in reports, however some
metrics of this discussion could be defined and included to
assess the complexity of the problem.

Performing testing we usually rely on different test
methods, operational profiles and the complexity of test
cases. Combining this knowledge with test monitoring may
support project manager decisions e.g. having identified a
significant delay in the test schedule plan some
redistribution of human resources or overtimes can be
involved. This has an impact on fault detection intensity.
Hence, the derived prediction models should admit
appropriate corrections and additional coefficients.

We should also take into account available system logs,
e.g. event and performance. They are especially useful
during operation and maintenance phases. They provide
some information on interaction of the analysed system with
the environment, changes in hardware or operating system
configurations, upgrades, administrator activities, etc. They
should be correlated with classical problem reports. The
more that recently complex software and hardware
environment may create many problems with the
application operation. We have got much experience in this
area also. This is reported in [10-12].

In many commercial projects we have some restrictions
imposed by the clients on monitoring the installed software
due to data sensitivity. Here, some intermediate and
synthetic metrics can be used (e.g. instead of the real
number of active customers and used resources other
relative metrics). Another possibility is value and time
scaling of metrics. This has to be agreed with the software
provider and owner.

Conclusion
Having analysed problem reports related to developing

real software projects we have found that they can provide
valuable data to control development, testing and
maintenance processes. On the other hand the accuracy
and information contents of reports can be improved.
Moreover, for better result interpretation it is reasonable to
trace various features describing the above mentioned
processes (neglected in practice). Another observation is
the need of extending monitoring problem reports with
system logs. This is especially important during software
maintenance phase [13,14]. The presented results were
based on real projects and our analysis is ex post.
However, the conclusions attracted the related companies
to extend and improve monitoring schemes. The considered
model with interleaved development and usage phases is
typical for some projects (not covered in the literature).

Further research is targeted at correlating monitored
features with program requirements, structures, workload
profiles, human resources, etc. This can facilitate project
management (compare [15]).

REFERENCES
[1] Sommerville I., Software engineering, 9th edition, Pearson,

(2011)
[2] Kan S. H., Metrics and models in software quality engineering,

Addison Wesly, (2003)
[3] Pham H., Software reliability, Springer, (2000)
[4] Zeng J., Li J., Zeng X., Luo W., A prototype system of

software reliability prediction and estimation, Proc. of 3rd Int.
Symposium on Intelligent Information Technology and Security
Informatics, (2010), 558-601

[5] Bluvband Z., Porotsky S., Talmor M., Advanced models for
software reliability prediction, Proc. of IEEE Annual Symp. on
Reliability and Maintanability, (2011)

[6] Chen Y-Ch., Wang X. W., Neural network based approach
on reliability prediction of software in maintenance phase, Proc.
of IEEE IEEM Conference, (2009), 257-261

[7] Huang Ch-Y., Lyu M. R., Estimation and analysis of some,
generalized multiple change-point software reliability models,
IEEE Transactions on Reliability, 60, No. 2, June (2011), 498-
511

[8] Sosnowski J., Sabak J. Software reliability analysis in
designing data base oriented applications, Proc. of 27th
Euromicro Conf. IEEE Comp. Society, (2001), 166-173

[9] O. Krini, J. Borcsok, New scientific contributions to the
prediction of the reliability of critical systems which base on
imperfect debugging, Proc. of International Symp. on
Telecommunications, IEEE, (2012)

[10] Król M., Sosnowski J., Multidimensional monitoring of
computer systems, Proc. of IEEE Symposia and Workshops on
Ubiquitous, Autonomic and Trusted Computing, (2009), 68-74

[11] Sosnowski J., Kubacki M., Krawczyk H., Monitoring event
logs within a cluster system, Complex Systems and
Dependability (ed. W. Zamojski et al.), Advances in Intelligent
and Soft Computing, Springer, 170, (2012), 259-271

[12] La tos ińsk i P . , Sosnowsk i J . , Monitoring dependability of
a mail server, Przegląd Elektrotechniczny (Electrical Review),
Sigma NOT, No 10b, (2012), 223-226

[13] Yu L i , Zheng Z , Lan Z ., Practical online failure prediction
for Blue Gene/P: Period-based vs. Event-driven, Proc. of the
IEEE/IFIP International Conference DSN, (2011), 259-264

[14] Salfiner F., Lenk M., Malek M., A survey of failure
prediction methods, ACM Computing Surveys, 42, No. 3,
March (2010)

[15] Ferrucci F., et al., Not going to take this anymore: Multi-
objective overtime planning for software engineering projects,
Proc. of ICSE Conference, (2013), 462-471

Authors: mgr inż. Paweł Janczarek; prof. dr hab. inż. Janusz
Sosnowski, Politechnika Warszawska, Instytut Informatyki, ul.
Nowowiejska 15/19, Warszawa 00-665,
E-mail: Pawel.Janczareki@gmail.com; J.Sosnowski@ii.pw.edu.pl

