
PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 90 NR 2/2014 121

Sławomir CHYŁEK

Warsaw University of Technology, Institute of Computer Science

Emulation based software reliability evaluation and optimization

Abstract. This paper presents an original software reliability assessment method implemented in the QEMU Fault Injection Framework – an
emulation based SWIFI tool. The method was utilized in evaluation of susceptibility to memory faults of GNU/Linux operating system components:
executable code, stack space and dynamically allocated data. Presented experiments’ results are basis to the development of a new heuristic
mechanism for improving the executable code robustness.

Streszczenie. Niniejszy artykuł przedstawia metodę oceny niezawodności oprogramowania zaimplementowaną w QEMU Fault Injection Framework
– opartym o emulator narzędziu typu SWIFI. Zaprezentowaną metodę zastosowano do ewaluacji wrażliwości na błędy pamięci w kodzie,przestrzeni
stosu oraz danych systemiu GNU/Linux. Uzyskane wyniki stanowią podstawę do opracowania nowego heurystycznego mechanizmu zwiększania
niezawodności wykonywalnego kodu. (Ocena i optymalizacja niezawodności oprogramowania z zastosowaniem emulacji).

Keywords: emulation, fault injection, operating systems, software reliability.
Słowa kluczowe: emulacja, wstrzykiwanie błędów, systemy operacyjne, niezawodność oprogramowania.

doi:10.12915/pe.2014.02.32

Introduction

Computer systems’ security can be compromised in
multiple ways – by deliberate attacks or by hardware
malfunctions. The latter threat is growing due to increased
density of integrated circuits [1]. The expanse of Customer
Of The Shelf (COTS) components into new disciplines like
smartphones used to monitor owners’ health parameters [2]
raises a need to increase reliability of such solutions. Well
established methods of developing robust software
(checkpointing, N-version programming) are costly and hard
to adapt into COTS components.

In this paper we present a novel method to enhance
service availability by assessment of a computer system
behavior in presence of memory faults followed by a new
method of handling exceptions caused by disturbances in
executable code. The differentiator of the assessment
method is adaptation of computer system emulation to
realize Software Implemented Fault Injection (SWIFI).
Thanks to this approach memory faults are injected without
interaction with the System Under Test (SUT) unlike in
SWIFI tools based on debugging API [3]. This unique
feature allowed evaluating operating system susceptibility to
memory faults. A set of experiments was designed to
identify critical components of the operating system and
propose a new method to improve operating system
reliability. In the described research the GNU/Linux
operating system was evaluated and the effectiveness of
the proposed reliability improvement method was
measured.

The rest of this paper is organized as follows. The next
section presents the experiments' environment. Following
section is dedicated to results obtained from conducted
experiments. The next section describes the new reliability
improvement method with discussion on results. The
remainder of the paper concludes the findings and outlines
further research areas.

QEMU Fault Injection Framework (QEFI)

QEMU [4] is a versatile computer system emulator. It
supports various computer system architectures and is
released under open source license. Due to these features
it is widely used in research [5, 6, 7]. QEMU was adapted at
Warsaw University of Technology to support fault injection
in order to conduct reliability experiments. Preliminary
works on QEFI were presented in [8, 9].

QEFI architecture consists of following components:
modified QEMU, Supervisor program and Analyzer
program. The architecture is presented on figure 1.

Fig. 1. QEFI architecture

QEMU is responsible for emulating a SUT computer

system and was enhanced with extra features, namely
ability to inject memory faults and additional tracing
mechanisms. Injecting a fault is controlled with two
parameters: location and injection moment. Location is a
range of memory addresses from which a random memory
cell is selected as an injection target. The injection moment
is immediate or delayed. In case of immediate injection the
memory cell is disturbed at the time of issuing the injection
command while delayed injection is related to some
triggering event – e.g. execution of a specified instruction by
the emulated CPU or access to some range of memory.
Designed tracing mechanisms embedded into QEMU are:
profiling the code executed in kernel space (according to
method described in [10]), counting the number of times a
disturbed code was executed and tracing dynamic memory
allocations in kernel space.

Supervisor is responsible for following operations:
conducting interaction with SUT (e.g. simulate user activity),
controlling the fault injection process (i.e. issuing injection
commands to QEMU) and collecting execution logs. In the
basic configuration Supervisor interacts with SUT via an
emulated by QEMU serial console exposed as a TCP/IP
service and interaction with QEMU software is realized with
QEMU’s control console accessible also on TCP/IP port.
Logs collected by Supervisor consist of communication with
SUT, commands issued to QEMU and tracing data
emerging on QEMU’s control console.

122 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 90 NR 2/2014

Analyzer program realizes post processing of logs
collected by Supervisor. Its goal is to analyze following
aspects: if the scenario was fully executed, if an injected
fault had an effect on SUT (i.e. the fault was manifested), if
and what kind of messages were reported by the operating
system. However, the set of analyzed aspects can be easily
extended. The analysis is executed in a batch mode and
results are stores in a Comma Separated Values (CSV) file
for latter processing.

Experiments conducted with QEFI are organized as
follows. The interaction sequence with SUT and QEMU that
is performed by the Supervisor is called a scenario. A single
scenario execution is called a test. An experiment is a
series of tests with fault injected at different memory
locations and/or at different injection moments.

The most important features of the described framework
are: ability to disturb operating system software (code, stack
and data) and scalability since multiple pairs of Supervisor
and QEMU programs can be run parallel in order to
accelerate the process of collecting results. Additional
advantages of utilizing QEMU emulator in SWIFI are
possibility to perform a comparison evaluation of different
operating systems or different CPU architectures and ability
to inject fault into emulated hardware, although these topics
exceed the scope of this paper.

Experiments

Experiments conduced with QEFI are targeted at
assessment of the GNU/Linux kernel since this system is
more and more often adapted into COTS embedded
solutions (e.g. Android smartphone operating system). The
tested system is an emulated x86 computer operating under
Debian Squeeze Linux distribution with GNU/Linux kernel
version 2.6.32.

Three experiment scenarios were prepared in order to
inject faults into operating system’s executable code, stack
and dynamically allocated memory, since memory faults are
common [11]. The injected fault model is a single upset
event modeled as bit-flip memory operation. All experiments
share the same scenario with a different specification of a
injected fault. The scenario defines a series of commands
where a simulated by Supervisor user logs into the system
via serial console, downloads a specified file from a network
location and performs several filesystem operations. In case
of experiment aimed at executable code the fault injection
location was narrowed to memory areas that store
operating system’s functions invoked during the scenario
execution. Disturbing the stack memory was configured as
a delayed injection triggered when the emulated CPU
executes a call procedure instruction in kernel space. A
fault was injected at randomly chosen triggering event in a
range of 64 bytes starting from the address stored in the
stack pointer register. In case of disturbing dynamically
allocated data it was required to trace allocated memory
during SUT run. This was achieved by tracing invocations of
kmalloc_trace and kfree functions in GNU/Linux kernel1.
The fault injection was triggered by reading allocated data
and the read cell was modified.

For all experiments 10000 tests were performed. The
percentage of tests in which injected faults were manifested
is presented on figure 2 (tests with a fault injected into code,
but the disturbed instruction was not executed were filtered
out).

1 Tracing function calls is implemented as tracing execution of a
procedure call instruction with an argument that was an address of
one of traced functions.

Fig. 2. The percentage of tests with manifested faults

On figure 3 a detailed graph of manifestation types is
shown. The “Scenario completed” and “Scenario failed”
flags denote if the SUT was able to execute all commands
from the scenario. The “System message” flag marks that a
test’s log contained kernel messages. The “Application
message” flag indicates that the executed application
messages were somehow altered in comparison with a
reference run without a fault injection.

Fig. 3. Types of error manifestation

The percentage of kernel messages types is
summarized in Table 1. This data was collected from tests
marked on figure 3 as “Scenario failed & System message”
and “Scenario completed & System message”. The
percentage in the table denotes the number of tests’ logs
that contained a specified kernel message.

Table 1. Reported kernel messages

Message Code [%] Stack [%] Data [%]
Paging request failed 50.03 52.7 43.26
Null dereference 29.42 23.84 12.57
Segfault 0 0 10.11
Undefined instruction 9.03 7.74 8.55
Bad PC value 14.42 23.5 7.27

For executable code disturbance an additional analysis

was performed – if a test’s log contained a stack trace
report and a disturbed function was present in a stack trace
it was checked how many bytes separate the crash
instruction and the altered memory cell. A stack trace was
present in 58% of tests with system messages. The graph
presenting the measured distance including the number of
execution of the disturbed instruction is presented on fig. 4.
 Collected results show that the executable code is the
most susceptible component for memory errors. The
second is the stack space and both of these targets show
similar characteristics of error manifestation where ~90% of
faults were detected by operating system. The least
susceptible component is dynamically allocated data,
however it is characterized by a high number of faults that
caused applications malfunction (Fig. 3 “Scenario failed &

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

Code Stack Data

T
es

ts

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Code Stack Data

T
es

ts

Scenario completed &
Application message

Scenario completed &
System message

Scenario failed &
Application message

Scenario failed &
System message

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 90 NR 2/2014 123

Application message”) – this type of error is especially
dangerous since a fault had occurred in the operating
system and was passed to an application that cannot detect
whether data it receives is correct.

Fig. 4. The distance between a disturbed address and a crash
instruction

Optimization method
 Executable code is the most susceptible part of the
operating system, thus it is the first research effort is
focused on improving its reliability. The most important
conclusion from conducted experiments is that most of
reported kernel messages are “Paging request failed”
(According to table 1). This exception is raised when
Memory Management Unit (MMU) in computer system
cannot access memory referenced from the executed code.
The second observation comes from analysis of figure 4. A
large number of crashes occur after just one execution of
the disturbed instruction and a distance between a crashing
instruction and a disturbed memory cell is mostly in bounds
of 1-2 instructions (on x86 architecture an instruction code
is variable length, thus it is impossible to tell the exact
distance in executed instructions without dissembling the
code).

Fig. 5. Memory fault handing algorithm

 Based on these considerations a following optimization
method is proposed. A protected memory area with
executable code should have a backup image. When a
MMU exception is raised and the memory request cannot
be served a function’s code integrity check should be
triggered. If a disturbance in memory is detected a code
repair procedure should be performed. The procedure
should check if the memory is permanently damaged and if
possible it should restore the original code. After conducting
a repair procedure a thread that caused the MMU exception
should be restored. If the repair was successful (i.e. the
disturbed instruction is the same as instruction that
generated an impossible to serve memory request) the

thread would continue regular operation. If the repair was
not successful the thread would raise the MMU request one
more time, but the repair procedure won’t be triggered and
the thread would be terminated. The algorithm presenting
the entire handling procedure is shown on figure 5.
 A proof of concept implementation of a proposed
method was prepared. It consists of a kernel loadable
module (Module v.1) that creates a backup image of the
kernel’s executable code at load and modifies the MMU
interrupt handling procedure in order to realize the specified
algorithm (a kernel patch was applied to enable
implementation of this functionality). Furthermore the
analysis of the rest of kernel messages showed that some
of them are also caused by CPU interrupts (e.g. “Undefined
instruction” and “Bad PC value”) and a similar algorithm
may be applied. The second version of the module (Module
v.2) was prepared – it supported repair procedure for MMU
interrupts and additional CPU interrupts. Both module
versions were shipped to a SUT and an experiment of
10000 tests with fault injection in executable code was run
for each of them. Experiments’ results compared to the
original code injection experiment were presented on figure
6. The “Recovery triggered” flag denotes tests where a
repair procedure didn’t detect a fault in a crashing function’s
code. The “Recovery done” flag indicates that a repair
procedure detected a fault and restored an original code.

Fig. 6. Types of error manifestation with and without recovery
modules

 The proposed method increased the number of tests
with completed scenario from 9% to 18% (Module v.1) and
22% (Module v.2). However, the method is a heuristics – it
does not guarantee that conducting the repair procedure
won’t cause invalid results.
 The procedure is certainly effective only if there was
only one attempt to execute the disturbed instruction and
this attempt caused a crash. In case where disturbed
instruction was executed n times it is possible that during
executions before the crash some incorrect results were
produced and the repair procedure prevented the system
from crash, which in turn results in invalid data. Let’s
consider a function that is computing a length of a NULL-
terminated linked list where a disturbed instruction alters the
address of the next element in currently examined element.
The execution of the faulty code can follow the garbage
addresses until an invalid memory access occurs – this
event would trigger the repair procedure that fixes the
address of the next element. If the fixed address is by
coincidence a NULL terminal, then an invalid size of the list
would be returned from the function. The method to
determine whether faulty code was executed multiple times
is an open issue. Nevertheless, the main goal of the
proposed optimization method is to prevent either system or
application crash, so that inconsistencies could be detected

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Code Module
v.1

Module
v.2

T
es

ts

Scenario completed &
System message

Scenario completed &
Recovery done

Scenario failed &
Application message

Scenario failed &
Recovery done

Scenario failed &
Recovery triggered

Scenario failed &
System message

0%

5%

10%

15%

-1
0 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

T
es

ts
 w

it
h

a
st

ac
k

tr
ac

e

Distance between a disturbed address and a crash
instruction [bytes]

Number of executions = 1 Number of executions > 1

124 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 90 NR 2/2014

and corrected by mechanisms at higher abstraction level –
the presence of such mechanisms is mandatory in order to
protect against faults that don’t cause any crashes, but just
invalid results.
 It should be emphasized that the recovery procedure
was fully executed in 12-15% of tests, but the scenario was
not completed. The analysis of these cases showed that a
disturbed instruction usually preceded the crashing
instruction. Table 2 contains a listing of a sample original &
disturbed code. The “>” character denotes the crash
instruction.

Table 2. Sample original and disturbed code listing
Original code Disturbed cide
 mov 0x20(%ebx),%edx
 xor %eax,%eax

 mov (%ebx),%edx
> and %dh,(%ecx)

 In the presented sample a disturbance of single bit
resulted in altering the MOV’s instruction argument and
changed the length of the instruction code at the same time.
This in consequence resulted in executing AND instruction
which was not present in the original code. The proposed
method cannot handle such case. Nevertheless, the listed
code could be repaired by restoring the original code and
rolling back the instruction pointer to the MOV instruction.
 In general if the code execution (E) can be defined as a
sequence of transitions between states (S) after executing
the i-th instruction and x is the crash instruction then the
disturbed execution can be written as E=(S0, …, Si, …, Sx).
Let’s define an equivalent state (Ti) to the state Si in E,
where Ti has all resources read during execution of E the
same as in Si (it means that Ti may differ from Si only by
resources that would be overwritten by instructions
executed after the i-th instruction). The recovery problem
can be defined then as a search of a reverse transition from
Sx state to Ti state, where i is a one of instructions not
affected by the memory fault. This issue is a relaxed version
of a reversible execution [12] where transitions between all
states are required. The stated problem is the next research
area for proposed method improvement.

Summary

The presented method for assessment computer
system’s susceptibility to faults is unique due to ability of
injecting faults into operating system’s components,
nonintrusive tracing of execution and scalability. These
advantages were achieved due to utilization of emulation
software.

The method was implemented in QEFI software, which
was used to evaluate GNU/Linux kernel. Conducted
experiments were targeted at operating system’s
executable code, stack space and dynamically allocated
data. The results showed that the code is most susceptible
component, thus an original heuristic method for improving
reliability was proposed. The effectiveness of the method

was measured with QEFI and the number of successfully
conducted scenarios increased by 13% compared to the
reference injection experiment.

The analysis of the collected results enabled to state the
recovery problem. The next research effort is going to be
focused on this issue. Nevertheless, methods of protecting
kernel stack space and allocated data remain in the scope
of interest.

REFERENCES
[1] Aitken R., Fey G., Kalbarczyk Z., Reichenbach F., Sonza R.,

Reliability analysis reloaded: How will we survive?, Design,
Automation Test in Europe Conference Exhibition (2013), 358-
367

[2] Gupta N., Jilla S., Digital Fitness Connector: Smart Wearable
System, Informatics and Computational Intelligence (ICI), First
International Conference on (2011), 118-121

[3] Gawkowski P., Sosnowski J., Developing Fault Injection
Environment for Complex Experiments, On-Line Testing
Symposium, IOLTS '08, 14th IEEE International (2008), 179-
181

[4] Bellard F., QEMU, a fast and portable dynamic translator,
Proceedings of the annual conference on USENIX Annual
Technical Conference, ATEC ‘05 (2005), 41-41

[5] Sand M., Potyra S., Sieh V., Deterministic high-speed
simulation of complex systems including fault-injection,
Dependable Systems & Networks, DSN '09, IEEE/IFIP
International Conference on (2009), 211-216

[6] Onoue K., Oyama Y., Yonezawa A., A Virtual Machine
Migration System Based on a CPU Emulator, Virtualization
Technology in Distributed Computing, VTDC 2006, First
International Workshop on (2006), 3-3

[7] Chandra Shekar N., Wilson Naik B., Forensic Analysis on
QEMU, Computational Intelligence and Information Technology
(2011), 777-781

[8] Chyłek S., Goliszewski M., Wstrzykiwanie błędów oparte na
modelach - Zastosowania QEMU w analizie niezawodności
urządzeń mobilnych, Zeszyty Naukowe Wydziału Elektroniki,
Telekomunikacji i Informatyki Politechniki Gdańskiej (2011)
vol.1, nr.9, 489-494

[9] Chyłek S., Goliszewski M., QEMU-Based Fault Injection
Framework, Studia Informatica (2011), vol.33, nr.4(109), 25-42

[10] Chyłek S., QEMU CPU Tracer – an Exact Profiling Tool,
Metody Informatyki Stosowanej (2011), vol.5/2011, nr.30, 167-
172

[11] Schroeder B., Pinheiro E., Weber W., DRAM errors in the wild:
a large-scale field study, Proceedings of the eleventh
international joint conference on Measurement and modeling of
computer systems, SIGMETRICS '09 (2009), 193-204

[12] Akgul T., Mooney V., Instruction-level Reverse Execution for
Debugging, Proceedings of the 2002 ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and
engineering (2002), 18-25

Author: mgr inż. Sławomir Chyłek, Politechnika Warszawska,
Instytut Informatyki, ul. Nowowiejska 15/19, 00-665 Warszawa, E-
mail:S.Chylek@ii.pw.edu.pl;

