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Abstract. This paper presents an original software reliability assessment method implemented in the QEMU Fault Injection Framework – an 
emulation based SWIFI tool. The method was utilized in evaluation of susceptibility to memory faults of GNU/Linux operating system components: 
executable code, stack space and dynamically allocated data. Presented experiments’ results are basis to the development of a new heuristic 
mechanism for improving the executable code robustness. 
  
Streszczenie. Niniejszy artykuł przedstawia metodę oceny niezawodności oprogramowania zaimplementowaną w QEMU Fault Injection Framework 
– opartym o emulator narzędziu typu SWIFI. Zaprezentowaną metodę zastosowano do ewaluacji wrażliwości na błędy pamięci w kodzie,przestrzeni 
stosu oraz danych systemiu GNU/Linux. Uzyskane wyniki stanowią podstawę do opracowania nowego heurystycznego mechanizmu zwiększania 
niezawodności wykonywalnego kodu. (Ocena i optymalizacja niezawodności oprogramowania z zastosowaniem emulacji).  
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Introduction 

Computer systems’ security can be compromised in 
multiple ways – by deliberate attacks or by hardware 
malfunctions. The latter threat is growing due to increased 
density of integrated circuits [1]. The expanse of Customer 
Of The Shelf (COTS) components into new disciplines like 
smartphones used to monitor owners’ health parameters [2] 
raises a need to increase reliability of such solutions. Well 
established methods of developing robust software 
(checkpointing, N-version programming) are costly and hard 
to adapt into COTS components. 

In this paper we present a novel method to enhance 
service availability by assessment of a computer system 
behavior in presence of memory faults followed by a new 
method of handling exceptions caused by disturbances in 
executable code. The differentiator of the assessment 
method is adaptation of computer system emulation to 
realize Software Implemented Fault Injection (SWIFI). 
Thanks to this approach memory faults are injected without 
interaction with the System Under Test (SUT) unlike in 
SWIFI tools based on debugging API [3]. This unique 
feature allowed evaluating operating system susceptibility to 
memory faults. A set of experiments was designed to 
identify critical components of the operating system and 
propose a new method to improve operating system 
reliability. In the described research the GNU/Linux 
operating system was evaluated and the effectiveness of 
the proposed reliability improvement method was 
measured.  

The rest of this paper is organized as follows. The next 
section presents the experiments' environment. Following 
section is dedicated to results obtained from conducted 
experiments. The next section describes the new reliability 
improvement method with discussion on results. The 
remainder of the paper concludes the findings and outlines 
further research areas. 
 
QEMU Fault Injection Framework (QEFI) 

QEMU [4] is a versatile computer system emulator. It 
supports various computer system architectures and is 
released under open source license. Due to these features 
it is widely used in research [5, 6, 7]. QEMU was adapted at 
Warsaw University of Technology to support fault injection 
in order to conduct reliability experiments. Preliminary 
works on QEFI were presented in [8, 9]. 

QEFI architecture consists of following components: 
modified QEMU, Supervisor program and Analyzer 
program.  The architecture is presented on figure 1. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. QEFI architecture 

 
QEMU is responsible for emulating a SUT computer 

system and was enhanced with extra features, namely 
ability to inject memory faults and additional tracing 
mechanisms. Injecting a fault is controlled with two 
parameters: location and injection moment. Location is a 
range of memory addresses from which a random memory 
cell is selected as an injection target. The injection moment 
is immediate or delayed. In case of immediate injection the 
memory cell is disturbed at the time of issuing the injection 
command while delayed injection is related to some 
triggering event – e.g. execution of a specified instruction by 
the emulated CPU or access to some range of memory. 
Designed tracing mechanisms embedded into QEMU are: 
profiling the code executed in kernel space (according to 
method described in [10]), counting the number of times a 
disturbed code was executed and tracing dynamic memory 
allocations in kernel space.  

Supervisor is responsible for following operations: 
conducting interaction with SUT (e.g. simulate user activity), 
controlling the fault injection process (i.e. issuing injection 
commands to QEMU) and collecting execution logs. In the 
basic configuration Supervisor interacts with SUT via an 
emulated by QEMU serial console exposed as a TCP/IP 
service and interaction with QEMU software is realized with 
QEMU’s control console accessible also on TCP/IP port. 
Logs collected by Supervisor consist of communication with 
SUT, commands issued to QEMU and tracing data 
emerging on QEMU’s control console. 
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Analyzer program realizes post processing of logs 
collected by Supervisor. Its goal is to analyze following 
aspects: if the scenario was fully executed, if an injected 
fault had an effect on SUT (i.e. the fault was manifested), if 
and what kind of messages were reported by the operating 
system. However, the set of analyzed aspects can be easily 
extended. The analysis is executed in a batch mode and 
results are stores in a Comma Separated Values (CSV) file 
for latter processing. 

Experiments conducted with QEFI are organized as 
follows. The interaction sequence with SUT and QEMU that 
is performed by the Supervisor is called a scenario. A single 
scenario execution is called a test. An experiment is a 
series of tests with fault injected at different memory 
locations and/or at different injection moments.  

The most important features of the described framework 
are: ability to disturb operating system software (code, stack 
and data) and scalability since multiple pairs of Supervisor 
and QEMU programs can be run parallel in order to 
accelerate the process of collecting results. Additional 
advantages of utilizing QEMU emulator in SWIFI are 
possibility to perform a comparison evaluation of different 
operating systems or different CPU architectures and ability 
to inject fault into emulated hardware, although these topics 
exceed the scope of this paper. 
 
Experiments 

Experiments conduced with QEFI are targeted at 
assessment of the GNU/Linux kernel since this system is 
more and more often adapted into COTS embedded 
solutions (e.g. Android smartphone operating system). The 
tested system is an emulated x86 computer operating under 
Debian Squeeze Linux distribution with GNU/Linux kernel 
version 2.6.32. 

Three experiment scenarios were prepared in order to 
inject faults into operating system’s executable code, stack 
and dynamically allocated memory, since memory faults are 
common [11]. The injected fault model is a single upset 
event modeled as bit-flip memory operation. All experiments 
share the same scenario with a different specification of a 
injected fault. The scenario defines a series of commands 
where a simulated by Supervisor user logs into the system 
via serial console, downloads a specified file from a network 
location and performs several filesystem operations. In case 
of experiment aimed at executable code the fault injection 
location was narrowed to memory areas that store 
operating system’s functions invoked during the scenario 
execution. Disturbing the stack memory was configured as 
a delayed injection triggered when the emulated CPU 
executes a call procedure instruction in kernel space. A 
fault was injected at randomly chosen triggering event in a 
range of 64 bytes starting from the address stored in the 
stack pointer register. In case of disturbing dynamically 
allocated data it was required to trace allocated memory 
during SUT run. This was achieved by tracing invocations of 
kmalloc_trace and kfree functions in GNU/Linux kernel1. 
The fault injection was triggered by reading allocated data 
and the read cell was modified. 

For all experiments 10000 tests were performed. The 
percentage of tests in which injected faults were manifested 
is presented on figure 2 (tests with a fault injected into code, 
but the disturbed instruction was not executed were filtered 
out).  

 
 

                                                 
1 Tracing function calls is implemented as tracing execution of a 
procedure call instruction with an argument that was an address of 
one of traced functions. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2. The percentage of tests with manifested faults 
 

On figure 3 a detailed graph of manifestation types is 
shown. The “Scenario completed” and “Scenario failed” 
flags denote if the SUT was able to execute all commands 
from the scenario. The “System message” flag marks that a 
test’s log contained kernel messages. The “Application 
message” flag indicates that the executed application 
messages were somehow altered in comparison with a 
reference run without a fault injection. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Types of error manifestation 
 

The percentage of kernel messages types is 
summarized in Table 1. This data was collected from tests 
marked on figure 3 as “Scenario failed & System message” 
and “Scenario completed & System message”. The 
percentage in the table denotes the number of tests’ logs 
that contained a specified kernel message. 

 
Table 1. Reported kernel messages 

Message Code [%] Stack [%] Data [%] 
Paging request failed 50.03 52.7 43.26 
Null dereference 29.42 23.84 12.57 
Segfault 0 0 10.11 
Undefined instruction 9.03 7.74 8.55 
Bad PC value 14.42 23.5 7.27 

 
For executable code disturbance an additional analysis 

was performed – if a test’s log contained a stack trace 
report and a disturbed function was present in a stack trace 
it was checked how many bytes separate the crash 
instruction and the altered memory cell. A stack trace was 
present in 58% of tests with system messages. The graph 
presenting the measured distance including the number of 
execution of the disturbed instruction is presented on fig. 4. 
 Collected results show that the executable code is the 
most susceptible component for memory errors. The 
second is the stack space and both of these targets show 
similar characteristics of error manifestation where ~90% of 
faults were detected by operating system. The least 
susceptible component is dynamically allocated data, 
however it is characterized by a high number of faults that 
caused applications malfunction (Fig. 3 “Scenario failed & 
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Application message”) – this type of error is especially 
dangerous since a fault had occurred in the operating 
system and was passed to an application that cannot detect 
whether data it receives is correct. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. The distance between a disturbed address and a crash 
instruction 
 
Optimization method 
 Executable code is the most susceptible part of the 
operating system, thus it is the first research effort is 
focused on improving its reliability. The most important 
conclusion from conducted experiments is that most of 
reported kernel messages are “Paging request failed” 
(According to table 1). This exception is raised when 
Memory Management Unit (MMU) in computer system 
cannot access memory referenced from the executed code. 
The second observation comes from analysis of figure 4. A 
large number of crashes occur after just one execution of 
the disturbed instruction and a distance between a crashing 
instruction and a disturbed memory cell is mostly in bounds 
of 1-2 instructions (on x86 architecture an instruction code 
is variable length, thus it is impossible to tell the exact 
distance in executed instructions without dissembling the 
code).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Memory fault handing algorithm 
 
 Based on these considerations a following optimization 
method is proposed. A protected memory area with 
executable code should have a backup image. When a 
MMU exception is raised and the memory request cannot 
be served a function’s code integrity check should be 
triggered. If a disturbance in memory is detected a code 
repair procedure should be performed. The procedure 
should check if the memory is permanently damaged and if 
possible it should restore the original code. After conducting 
a repair procedure a thread that caused the MMU exception 
should be restored. If the repair was successful (i.e. the 
disturbed instruction is the same as instruction that 
generated an impossible to serve memory request) the 

thread would continue regular operation. If the repair was 
not successful the thread would raise the MMU request one 
more time, but the repair procedure won’t be triggered and 
the thread would be terminated. The algorithm presenting 
the entire handling procedure is shown on figure 5. 
 A proof of concept implementation of a proposed 
method was prepared. It consists of a kernel loadable 
module (Module v.1) that creates a backup image of the 
kernel’s executable code at load and modifies the MMU 
interrupt handling procedure in order to realize the specified 
algorithm (a kernel patch was applied to enable 
implementation of this functionality). Furthermore the 
analysis of the rest of kernel messages showed that some 
of them are also caused by CPU interrupts (e.g. “Undefined 
instruction” and “Bad PC value”) and a similar algorithm 
may be applied. The second version of the module (Module 
v.2) was prepared – it supported repair procedure for MMU 
interrupts and additional CPU interrupts. Both module 
versions were shipped to a SUT and an experiment of 
10000 tests with fault injection in executable code was run 
for each of them. Experiments’ results compared to the 
original code injection experiment were presented on figure 
6.  The “Recovery triggered” flag denotes tests where a 
repair procedure didn’t detect a fault in a crashing function’s 
code. The “Recovery done” flag indicates that a repair 
procedure detected a fault and restored an original code. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Types of error manifestation with and without recovery 
modules 
 

 The proposed method increased the number of tests 
with completed scenario from 9% to 18% (Module v.1) and 
22% (Module v.2). However, the method is a heuristics – it 
does not guarantee that conducting the repair procedure 
won’t cause invalid results.  
 The procedure is certainly effective only if there was 
only one attempt to execute the disturbed instruction and 
this attempt caused a crash. In case where disturbed 
instruction was executed n times it is possible that during 
executions before the crash some incorrect results were 
produced and the repair procedure prevented the system 
from crash, which in turn results in invalid data. Let’s 
consider a function that is computing a length of a NULL-
terminated linked list where a disturbed instruction alters the 
address of the next element in currently examined element. 
The execution of the faulty code can follow the garbage 
addresses until an invalid memory access occurs – this 
event would trigger the repair procedure that fixes the 
address of the next element. If the fixed address is by 
coincidence a NULL terminal, then an invalid size of the list 
would be returned from the function. The method to 
determine whether faulty code was executed multiple times 
is an open issue. Nevertheless, the main goal of the 
proposed optimization method is to prevent either system or 
application crash, so that inconsistencies could be detected 
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and corrected by mechanisms at higher abstraction level – 
the presence of such mechanisms is mandatory in order to 
protect against faults that don’t cause any crashes, but just 
invalid results. 
 It should be emphasized that the recovery procedure 
was fully executed in 12-15% of tests, but the scenario was 
not completed. The analysis of these cases showed that a 
disturbed instruction usually preceded the crashing 
instruction. Table 2 contains a listing of a sample original & 
disturbed code. The “>” character denotes the crash 
instruction. 
 
Table 2. Sample original and disturbed code listing 
Original code Disturbed cide 
  mov 0x20(%ebx),%edx 
  xor %eax,%eax 

  mov (%ebx),%edx 
> and %dh,(%ecx) 

 
 In the presented sample a disturbance of single bit 
resulted in altering the MOV’s instruction argument and 
changed the length of the instruction code at the same time. 
This in consequence resulted in executing AND instruction 
which was not present in the original code. The proposed 
method cannot handle such case. Nevertheless, the listed 
code could be repaired by restoring the original code and 
rolling back the instruction pointer to the MOV instruction.  
 In general if the code execution (E) can be defined as a 
sequence of transitions between states (S) after executing 
the i-th instruction and x is the crash instruction then the 
disturbed execution can be written as E=(S0, …, Si, …, Sx). 
Let’s define an equivalent state (Ti) to the state Si in E, 
where Ti has all resources read during execution of E the 
same as in Si (it means that Ti may differ from Si only by 
resources that would be overwritten by instructions 
executed after the i-th instruction). The recovery problem 
can be defined then as a search of a reverse transition from 
Sx state to Ti state, where i is a one of instructions not 
affected by the memory fault. This issue is a relaxed version 
of a reversible execution [12] where transitions between all 
states are required. The stated problem is the next research 
area for proposed method improvement. 
 
Summary 

The presented method for assessment computer 
system’s susceptibility to faults is unique due to ability of 
injecting faults into operating system’s components, 
nonintrusive tracing of execution and scalability. These 
advantages were achieved due to utilization of emulation 
software.  

The method was implemented in QEFI software, which 
was used to evaluate GNU/Linux kernel. Conducted 
experiments were targeted at operating system’s 
executable code, stack space and dynamically allocated 
data. The results showed that the code is most susceptible 
component, thus an original heuristic method for improving 
reliability was proposed. The effectiveness of the method 

was measured with QEFI and the number of successfully 
conducted scenarios increased by 13% compared to the 
reference injection experiment. 

The analysis of the collected results enabled to state the 
recovery problem. The next research effort is going to be 
focused on this issue. Nevertheless, methods of protecting 
kernel stack space and allocated data remain in the scope 
of interest. 
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