
PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 90 NR 2/2014 125

Agnieszka KAMIŃSKA, Włodzimierz BIELECKI

West Pomeranian University of Technology, Szczecin

Model for the estimation of the execution time of parallel
program loops

Abstract. This paper presents the assumptions and proposition of the model for the estimation of the execution time of parallel program loops. The
model is intended to be used in iterative compilation. The model has been elaborated with the focus on shortening the duration of iterative
compilation.

Streszczenie. W artykule przedstawiono założenia i propozycję modelu do oszacowania czasu wykonania zrównoleglonych pętli programowych.
Przewidywanym obszarem zastosowania modelu jest kompilacja iteracyjna. Model został opracowany pod kątem skrócenia czasu kompilacji
iteracyjnej. (Model do oszacowania czasu wykonania zrównoleglonych pętli programowych).

Keywords: iterative compilation; program execution time; performance estimation.
Słowa kluczowe: Kompilacja iteracyjna, czas wykonania programu, szacowanie wydajności.

doi:10.12915/pe.2014.02.33

Introduction

Despite continuous development and improvement of
computer hardware, laws of physics impose limits on the
possible increase of the clock rate of a microprocessor.
Since the duration of data processing by a computer system
is crucial in many practical applications of such systems,
use of multiprocessor computers supporting parallel
computing has become an alternative for increasing the
clock rate of a microprocessor.

Parallel computing is based on the principle that a large
problem can often be divided into smaller problems, which
are then solved concurrently ("in parallel") and in a shorter
time than it would take to solve an original large problem.

Parallel applications used in parallel computing can be
created either manually or automatically. In case of the
manual creation, a developer either writes a parallel
application from scratch or parallelizes an already existing,
sequential application. In case of the automatic creation,
dedicated parallelizing compilers automatically convert
sequential applications into parallel equivalents.

Because of active involvement of a human being in the
manual creation of parallel applications, it is time
consuming and error prone. For these reasons, the
automatic creation of parallel applications is much more
advantageous.

Currently, there are no theoretical means enabling one
to state, at the compilation stage, how a sequence of
semantically allowed transformations used for converting a
sequential source code into its parallel equivalent will
translate into the actual execution time of the parallel
application in the target hardware environment. Therefore,
in case of some practical problems and applications (e.g.
embedded systems, scientific calculations, etc.) requiring
high efficiency, one carries out so-called iterative
compilation.

In this approach, the initial (and in this case, sequential)
source code is transformed in successive steps (called
iterations) into syntactically different yet semantically
identical (and in this case, parallel) equivalents. Each
equivalent version of the initial source code is executed in a
target hardware environment; the equivalent version having
the shortest measured execution time is selected for final
use [1].

Iterative compilation is effective but time consuming. A
potential area of improvement in iterative compilation is to
use estimates in order to narrow the group of semantically
allowed transformations for a given source code to
transformations producing equivalent source codes of

possibly shortest execution time. When estimates are used
in such a way for selection purposes, it is sufficient to
examine in the target hardware environment only the
behaviour of the so selected, equivalent source codes. In
consequence, the total duration of iterative compilation gets
shortened, with no deterioration of its results [1].

Typically used approaches to estimation of program
execution time

There are two alternative approaches that can be used
for the estimation of program execution time: profiling (also
known as "program profiling", "software profiling") and
performance models.

Within profiling, detailed information (regarding e.g.
usage of particular instructions, frequency and duration of
function calls) on the program behaviour is collected during
execution of the program and then used for the analysis of
the program behaviour and for program optimization.
Profiling is time consuming and as such, when applied in
iterative compilation, it does not provide satisfactory
shortening of the duration of iterative compilation.
Therefore, from the practical point of view, the only
reasonable alternative for profiling is to use performance
models oriented on estimation of program execution time.

Model is a simplified view of some aspect of reality.
Model should reflect, as thoroughly as possible, the issues
which are relevant for the modelled perspective, at the
same time partially or completely ignoring the issues which
are not relevant therefor.

A good model should explain the known observations
regarding the object/phenomenon under consideration and
give one the possibility of making predictions regarding the
object/phenomenon under consideration.

Typically used techniques of modelling performance,
based on program execution time, are: Amdahl's law,
extrapolation from observation and asymptotic analysis [2,
3].

According to Amdahl’s law, the maximum possible
speedup to be gained from parallel execution of a program
is limited by the sequential part/component of the program,
i.e. this part/component of the program, which always has
to be executed sequentially. Amdahl’s law provides no
explicit means for calculating the fraction of operations in a
computation that have to be performed sequentially [2].

Within extrapolation from observation, the performance
of the application is measured in several points (e.g. for
several various problem sizes and a given number of
processors executing the program) and the results of such

126 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 90 NR 2/2014

measurements are used for predicting the behaviour of the
analysed application in situations different than the ones
being the base for extrapolation. Extrapolation from
observation takes no account of the algorithm executed
within the program, which may result in a significant
estimation error for the estimations made in such a way [2].

With asymptotic analysis, it is possible to state how the
program execution time changes depending on the problem
size, when the said problem size and the number of
processors used for execution of the program are large or
very large. However, this technique provides no information
about the program execution time for smaller problem sizes
and a different number of processors [2].

The above description shows that the discussed
techniques of modelling performance, based on program
execution time, are inadequate for the proposed
improvement of iterative compilation i.e. using estimates in
order to narrow the group of semantically allowed
transformations for a given source code to the
transformations producing equivalent source codes of
possibly shortest execution time in a given hardware
environment. Therefore, the proposed improvement
requires and involves elaboration of a completely new
performance model, dedicated entirely for this
improvement.

Description of the proposed model

In order to elaborate the model for estimation of
execution time of parallel applications, adequate to be used
in iterative compilation as the compilation stage selector of
source code versions/transformations of possibly shortest
execution time, one has to in the first place formulate the
assumptions and limitations of the model. Only when these
assumptions and limitations are met, the estimates made
with the elaborated model are of satisfactory accuracy.

The assumptions and limitations in question regard the
following aspects:

- Scope of applicability of the model,
- Dependent and independent variables of the model,
- Type and form of the model.
Defining the scope of applicability of the model is the

key and first problem to solve, as it is not possible to
formulate a universal and at the same time, sufficiently
precise, model adequate for all possible cases.

Since the majority of time consuming calculations in the
program is usually executed in program loops, therefore in
parallel applications the focus is put on parallelization of
program loops. An important issue to take into account in
parallelization of program loops is their granularity, i.e. the
number of operations done between communication or
synchronization events. There are two types of granularity:
coarse-grained granularity and fine-grained granularity.
Coarse-grained granularity takes place when the number of
operations done between communication or
synchronization events is large; this type of granularity
corresponds with parallelization of a nested loop done at
the level of its outermost loop. Fine-grained granularity
takes place when the number of operations done between
communication or synchronization events is small; this type
of granularity corresponds with parallelization of a nested
loop done at the level of one of its inner loops [2, 3].

The scope of applicability of the model proposed herein
is coarse-grained parallel program loops, parallelized in the
OpenMP standard. The selection of OpenMP for
parallelization purposes results from the popularity of this
standard.

As the model is intended for estimation of program
execution time, the dependent variable of the model should
reflect this time. It is proposed herein to express this time by

total CPU time (i.e. the sum of CPU time consumed by all of
the CPUs utilized by the program) since it reflects the time
spent solely on processing instructions of the program.

Independent variables of the model should reflect crucial
factors having impact on program execution time. In view of
the assumptions made so far, there are the three factors to
be reflected in independent variables:

- Parameters of the target hardware environment in
which the program loop will be executed,

- An algorithm executed in the program loop,
- A specific way in which the program loop has been

parallelized.
Taking into account the intended use of the model, for

each of the factors listed above there has to be a
reasonable trade-off between the precision of reflecting the
factor in independent variables of the model and the
complexity of mathematical apparatus used for quantifying
this reflection.

As far as the target hardware environment is
considered, it is essential to remember that nowadays,
there is a large disproportion between processor speed and
memory access time [4]. Because of this disproportion, it is
the memory – and especially, the quickly accessible
processor cache memory – that is one of these components
of the hardware environment, which determine the duration
of program execution.

Ideally, all the data needed by the processor during
execution of a program should be available in the processor
cache memory at the moment they are requested, instead
of being just then fetched from the main memory to the
processor cache memory. The more data to be processed
in the program are available in the processor cache
memory at the moment they are requested, the shorter the
duration of program execution.

On the other hand, the data storage capacity of the
processor cache memory and its replacement policy
(associativity) determine what fraction of the data
processed in the program will be available in the processor
cache memory right at the moment they are requested.

This means that the duration of program execution
depends on:

1/ the actual data storage capacity of the processor
cache memory in a given computer system and its
replacement policy (associativity),

2/ the minimum data storage capacity of direct-mapped
cache, which is necessary in order to contain all the data
processed in the program, assuming the full temporal and
spatial reuse of the data stored in the cache memory. The
minimum data storage capacity in question can be
estimated by means of data footprint. In order to calculate
the data footprint for a given program, it is sufficient to know
the source code of a program; there is no need to execute
this program [5].

3/ the relation between 1/ and 2/.
In connection with the above, one has introduced into a

model variable X1 (calculated as per (2)) which expresses
the relation between 1/ and 2/.

Regarding the algorithm executed in the program loop,
one should reflect in the model the fact that, at the most low
level, various algorithms differ most significantly in the type
and number of arithmetic operations to be executed. A
simple yet effective way of quantifying the above
observation is to assign different weighting factors to
different arithmetic operations, based on the analysis of
instruction timings for a given processor. With this
approach, arithmetic operations of various types (e.g.
addition and multiplication) are comparable with one
another. For this reason, one has introduced into the model

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 90 NR 2/2014 127

variable X2 expressing the total weighted number of
arithmetic operations per single program thread.

As far as the way of parallelization of a program loop is
considered, a model should reflect the parallelization
approach adopted in the OpenMP standard, i.e.
multithreading [6].

In connection with the above, one has introduced into
the model variables expressing the number of threads
executing the program (variable X4) and the maximum
number of iterations in an iteration chunk per thread
(variable X3).

Taking into account large variety of issues to be
reflected in a model as well as complex, significant and
highly unformalizable relations between these issues and
the hardware environment, the easiest way of combining
them in a formula producing satisfactorily precise estimates
is to apply a statistical model built on a power function.

In statistical models, the values of model parameters are
estimated by means of regression analysis carried out on
the observations collected for the adopted sample. With this
approach, it is possible to achieve high goodness of fit of a
statistical model and keep it highly responsive to even very
minor changes in the values of its independent variables.

Moreover, the derivative of a power function is much
more responsive to even very minor changes in the values
of its arguments than the derivative of a linear function.

For these reasons, while constructing the model to be
used for the discussed herein improvement of iterative
compilation, a power function statistical model with
parameters a1, a2, a3, a4 has been applied.

Ultimately, the model, meeting all the assumptions and
limitations specified above, is as follows:

(1) 4321 4321 aaaa XXXXYt

where: Yt – total CPU time, X2 –total weighted number of
arithmetic operations per OpenMP thread, X3 –maximum
number of iterations in an iteration chunk per OpenMP
thread, X4 – number of OpenMP threads executing the
program, a1, a2, a3, a4 – parameters the values of which
are estimated by means of regression analysis carried out
on the empirical data collected in the target hardware
environment for a specially prepared sample.

(2)

fD

aLsLaLsL
X

2211
1

where: sL1 – data storage capacity of the L1 data cache,
available for a single OpenMP thread [B], sL2 – data
storage capacity of the L2 cache, available for a single
OpenMP thread [B], aL1 – set associativity of the L1 data
cache, aL2 – set associativity of the L2 cache, Df – data
footprint per OpenMP thread, calculated as per [5] [B].

It should be emphasized here that variables X1, X2 and
X3 are related to one another. The size of the problem
solved within the program is the binding element here.

Verification of the model and conclusions

Model (1) has been verified for 10 program loops
(CG_cg_3, CG_cg_4, FT_auxfnct_2, LU_HP_pintgr_11,
MG_mg_3, UA_diffuse_2, UA_diffuse_3, UA_diffuse_4,
UA_transfer_11, UA_transfer_16) selected from the NAS

suite that has been elaborated by the NASA Advanced
Supercomputing (NAS) Division as software means for
evaluating the performance of parallel supercomputers [7].

For each tested program loop, several different but
semantically equivalent, parallel versions of a source code
were generated. For each version, the time of its execution
on a multi core processor was measured and compared
with the corresponding estimate produced by model (1).

Based on this comparison, the quality of model (1) was
assessed. The assessment criteria were as follows:

1/ For each tested program loop, the actual execution
times and the corresponding estimates as per model (1)
should change in the same direction.

2/ For each tested program loop, the mean of the
relative estimation error for particular parallel versions of the
source code should be as low as possible.

Criterion 1/ has been met for all tested cases.
Regarding criterion 2/, results are summarized in Table 1.

Table 1. Estimation errors for the tested program loops

Loop name
Mean of the absolute values of
relative errors of estimates
calculated as per (1)

CG_cg_3 13.49
CG_cg_4 11.93
FT_auxfnct_2 52.64
LU_HP_pintgr_11 15.91
MG_mg_3 28.74
UA_diffuse_2 6.12
UA_diffuse_3 25.44
UA_diffuse_4 22.58
UA_transfer_11 12.22
UA_transfer_16 12.74

The achieved results indicate that model (1) offers a real

possibility of improving iterative compilation.
A more thorough discussion of the achieved results is

the object of separate papers.

REFERENCES
[1] Kisuki T., Knijnenburg P.M.W., Gallivan K., O'Boyle M.F.P.,

The effect of cache models on iterative compilation for
combined tiling and unrolling, Concurrency and Computation:
Practice and Experience, 16 (2004), Issue 2-3, 247-270

[2] Bielecki W., Przetwarzanie równoległe i rozproszone. Część 1.
Metody zrównoleglenia algorytmów i tworzenia aplikacji,
Wydawnictwo Uczelnianie Politechniki Szczecińskiej, 2007

[3] Bielecki W., Essentials of Parallel and Distributed Computing,
Informa, 2002

[4] Stallings W., Organizacja i architektura systemu
komputerowego. Projektowanie systemu a jego wydajność,
Wydawnictwa Naukowo-Techniczne, 2004

[5] Wolfe M., High Performance Compilers for Parallel Computing,
Addison Wesley, 1996

[6] OpenMP Specifications, http://openmp.org/wp/openmp-
specifications/

[7] NAS Parallel Benchmarks,
http://www.nas.nasa.gov/publications/npb.html

Authors: mgr inż. Agnieszka Kamińska, Zachodniopomorski
Uniwersytet Technologiczny w Szczecinie, Katedra Inżynierii
Oprogramowania, ul. Żołnierska 49, 71-210 Szczecin, E-mail:
agkaminska@wi.zut.edu.pl; prof. dr hab. inż. Włodzimierz Bielecki,
Zachodniopomorski Uniwersytet Technologiczny w Szczecinie,
Katedra Inżynierii Oprogramowania, ul. Żołnierska 49, 71-210
Szczecin, E-mail: wbielecki@wi.zut.edu.pl

