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Abstract. This paper presents the assumptions and proposition of the model for the estimation of the execution time of parallel program loops. The 
model is intended to be used in iterative compilation. The model has been elaborated with the focus on shortening the duration of iterative 
compilation.  
 
Streszczenie. W artykule przedstawiono założenia i propozycję modelu do oszacowania czasu wykonania zrównoleglonych pętli programowych. 
Przewidywanym obszarem zastosowania modelu jest kompilacja iteracyjna. Model został opracowany pod kątem skrócenia czasu kompilacji 
iteracyjnej. (Model do oszacowania czasu wykonania zrównoleglonych pętli programowych). 
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Introduction 

Despite continuous development and improvement of 
computer hardware, laws of physics impose limits on the 
possible increase of the clock rate of a microprocessor. 
Since the duration of data processing by a computer system 
is crucial in many practical applications of such systems, 
use of multiprocessor computers supporting parallel 
computing has become an alternative for increasing the 
clock rate of a microprocessor.  

Parallel computing is based on the principle that a large 
problem can often be divided into smaller problems, which 
are then solved concurrently ("in parallel") and in a shorter 
time than it would take to solve an original large problem.  

Parallel applications used in parallel computing can be 
created either manually or automatically. In case of the 
manual creation, a developer either writes a parallel 
application from scratch or parallelizes an already existing, 
sequential application. In case of the automatic creation, 
dedicated parallelizing compilers automatically convert 
sequential applications into parallel equivalents.  

Because of active involvement of a human being in the 
manual creation of parallel applications, it is time 
consuming and error prone. For these reasons, the 
automatic creation of parallel applications is much more 
advantageous.  

Currently, there are no theoretical means enabling one 
to state, at the compilation stage, how a sequence of 
semantically allowed transformations used for converting a 
sequential source code into its parallel equivalent will 
translate into the actual execution time of the parallel 
application in the target hardware environment. Therefore, 
in case of some practical problems and applications (e.g. 
embedded systems, scientific calculations, etc.) requiring 
high efficiency, one carries out so-called iterative 
compilation.   

In this approach, the initial (and in this case, sequential) 
source code is transformed in successive steps (called 
iterations) into syntactically different yet semantically 
identical (and in this case, parallel) equivalents. Each 
equivalent version of the initial source code is executed in a 
target hardware environment; the equivalent version having 
the shortest measured execution time is selected for final 
use [1]. 

Iterative compilation is effective but time consuming. A 
potential area of improvement in iterative compilation is to 
use estimates in order to narrow the group of semantically 
allowed transformations for a given source code to 
transformations producing equivalent source codes of 

possibly shortest execution time. When estimates are used 
in such a way for selection purposes, it is sufficient to 
examine in the target hardware environment only the 
behaviour of the so selected, equivalent source codes. In 
consequence, the total duration of iterative compilation gets 
shortened, with no deterioration of its results [1]. 
 
Typically used approaches to estimation of program 
execution time  

There are two alternative approaches that can be used 
for the estimation of program execution time: profiling (also 
known as "program profiling", "software profiling") and 
performance models.  

Within profiling, detailed information (regarding e.g. 
usage of particular instructions, frequency and duration of 
function calls) on the program behaviour is collected during 
execution of the program and then used for the analysis of 
the program behaviour and for program optimization. 
Profiling is time consuming and as such, when applied in 
iterative compilation, it does not provide satisfactory 
shortening of the duration of iterative compilation. 
Therefore, from the practical point of view, the only 
reasonable alternative for profiling is to use performance 
models oriented on estimation of program execution time.  

Model is a simplified view of some aspect of reality. 
Model should reflect, as thoroughly as possible, the issues 
which are relevant for the modelled perspective, at the 
same time partially or completely ignoring the issues which 
are not relevant therefor.  

A good model should explain the known observations 
regarding the object/phenomenon under consideration and 
give one the possibility of making predictions regarding the 
object/phenomenon under consideration.  

Typically used techniques of modelling performance, 
based on program execution time, are: Amdahl's law, 
extrapolation from observation and asymptotic analysis [2, 
3]. 

According to Amdahl’s law, the maximum possible 
speedup to be gained from parallel execution of a program 
is limited by the sequential part/component of the program, 
i.e. this part/component of the program, which always has 
to be executed sequentially. Amdahl’s law provides no 
explicit means for calculating the fraction of operations in a 
computation that have to be performed sequentially [2]. 

Within extrapolation from observation, the performance 
of the application is measured in several points (e.g. for 
several various problem sizes and a given number of 
processors executing the program) and the results of such 
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measurements are used for predicting the behaviour of the 
analysed application in situations different than the ones 
being the base for extrapolation. Extrapolation from 
observation takes no account of the algorithm executed 
within the program, which may result in a significant 
estimation error for the estimations made in such a way [2]. 

With asymptotic analysis, it is possible to state how the 
program execution time changes depending on the problem 
size, when the said problem size and the number of 
processors used for execution of the program are large or 
very large. However, this technique provides no information 
about the program execution time for smaller problem sizes 
and a different number of processors [2]. 

The above description shows that the discussed 
techniques of modelling performance, based on program 
execution time, are inadequate for the proposed 
improvement of iterative compilation i.e. using estimates in 
order to narrow the group of semantically allowed 
transformations for a given source code to the 
transformations producing equivalent source codes of 
possibly shortest execution time in a given hardware 
environment. Therefore, the proposed improvement 
requires and involves elaboration of a completely new 
performance model, dedicated entirely for this 
improvement.  

 
Description of the proposed model 

In order to elaborate the model for estimation of 
execution time of parallel applications, adequate to be used 
in iterative compilation as the compilation stage selector of 
source code versions/transformations of possibly shortest 
execution time, one has to in the first place formulate the 
assumptions and limitations of the model. Only when these 
assumptions and limitations are met, the estimates made 
with the elaborated model are of satisfactory accuracy.  

The assumptions and limitations in question regard the 
following aspects:  

- Scope of applicability of the model, 
- Dependent and independent variables of the model, 
- Type and form of the model.  
Defining the scope of applicability of the model is the 

key and first problem to solve, as it is not possible to 
formulate a universal and at the same time, sufficiently 
precise, model adequate for all possible cases.  

Since the majority of time consuming calculations in the 
program is usually executed in program loops, therefore in 
parallel applications the focus is put on parallelization of 
program loops. An important issue to take into account in 
parallelization of program loops is their granularity, i.e. the 
number of operations done between communication or 
synchronization events. There are two types of granularity: 
coarse-grained granularity and fine-grained granularity. 
Coarse-grained granularity takes place when the number of 
operations done between communication or 
synchronization events is large; this type of granularity 
corresponds with parallelization of a nested loop done at 
the level of its outermost loop. Fine-grained granularity 
takes place when the number of operations done between 
communication or synchronization events is small; this type 
of granularity corresponds with parallelization of a nested 
loop done at the level of one of its inner loops [2, 3]. 

The scope of applicability of the model proposed herein 
is coarse-grained parallel program loops, parallelized in the 
OpenMP standard. The selection of OpenMP for 
parallelization purposes results from the popularity of this 
standard.  

As the model is intended for estimation of program 
execution time, the dependent variable of the model should 
reflect this time. It is proposed herein to express this time by 

total CPU time (i.e. the sum of CPU time consumed by all of 
the CPUs utilized by the program) since it reflects the time 
spent solely on processing instructions of the program.  

Independent variables of the model should reflect crucial 
factors having impact on program execution time. In view of 
the assumptions made so far, there are the three factors to 
be reflected in independent variables: 

- Parameters of the target hardware environment in 
which the program loop will be executed, 

- An algorithm executed in the program loop, 
- A specific way in which the program loop has been 

parallelized. 
Taking into account the intended use of the model, for 

each of the factors listed above there has to be a 
reasonable trade-off between the precision of reflecting the 
factor in independent variables of the model and the 
complexity of mathematical apparatus used for quantifying 
this reflection.  

As far as the target hardware environment is 
considered, it is essential to remember that nowadays, 
there is a large disproportion between processor speed and 
memory access time [4]. Because of this disproportion, it is 
the memory – and especially, the quickly accessible 
processor cache memory – that is one of these components 
of the hardware environment, which determine the duration 
of program execution.  

Ideally, all the data needed by the processor during 
execution of a program should be available in the processor 
cache memory at the moment they are requested, instead 
of being just then fetched from the main memory to the 
processor cache memory. The more data to be processed 
in the program are available in the processor cache 
memory at the moment they are requested, the shorter the 
duration of program execution.  

On the other hand, the data storage capacity of the 
processor cache memory and its replacement policy 
(associativity) determine what fraction of the data 
processed in the program will be available in the processor 
cache memory right at the moment they are requested. 

This means that the duration of program execution 
depends on: 

1/ the actual data storage capacity of the processor 
cache memory in a given computer system and its 
replacement policy (associativity), 

2/ the minimum data storage capacity of direct-mapped 
cache, which is necessary in order to contain all the data 
processed in the program, assuming the full temporal and 
spatial reuse of the data stored in the cache memory. The 
minimum data storage capacity in question can be 
estimated by means of data footprint. In order to calculate 
the data footprint for a given program, it is sufficient to know 
the source code of a program; there is no need to execute 
this program [5].    

3/ the relation between 1/ and 2/. 
In connection with the above, one has introduced into a 

model variable X1 (calculated as per (2)) which expresses 
the relation between 1/ and 2/.  

Regarding the algorithm executed in the program loop, 
one should reflect in the model the fact that, at the most low 
level, various algorithms differ most significantly in the type 
and number of arithmetic operations to be executed. A 
simple yet effective way of quantifying the above 
observation is to assign different weighting factors to 
different arithmetic operations, based on the analysis of 
instruction timings for a given processor. With this 
approach, arithmetic operations of various types (e.g. 
addition and multiplication) are comparable with one 
another. For this reason, one has introduced into the model 
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variable X2 expressing the total weighted number of 
arithmetic operations per single program thread. 

As far as the way of parallelization of a program loop is 
considered, a model should reflect the parallelization 
approach adopted in the OpenMP standard, i.e. 
multithreading [6].  

In connection with the above, one has introduced into 
the model variables expressing the number of threads 
executing the program (variable X4) and the maximum 
number of iterations in an iteration chunk per thread 
(variable X3).  

Taking into account large variety of issues to be 
reflected in a model as well as complex, significant and 
highly unformalizable relations between these issues and 
the hardware environment, the easiest way of combining 
them in a formula producing satisfactorily precise estimates 
is to apply a statistical model built on a power function.  

In statistical models, the values of model parameters are 
estimated by means of regression analysis carried out on 
the observations collected for the adopted sample. With this 
approach, it is possible to achieve high goodness of fit of a 
statistical model and keep it highly responsive to even very 
minor changes in the values of its independent variables.  

Moreover, the derivative of a power function is much 
more responsive to even very minor changes in the values 
of its arguments than the derivative of a linear function.  

For these reasons, while constructing the model to be 
used for the discussed herein improvement of iterative 
compilation, a power function statistical model with 
parameters a1, a2, a3, a4 has been applied. 

Ultimately, the model, meeting all the assumptions and 
limitations specified above, is as follows: 

(1)  4321 4321 aaaa XXXXYt   

where: Yt – total CPU time, X2 –total weighted number of 
arithmetic operations per OpenMP thread, X3 –maximum 
number of iterations in an iteration chunk per OpenMP 
thread, X4 – number of OpenMP threads executing the 
program, a1, a2, a3, a4 – parameters the values of which 
are estimated by means of regression analysis carried out 
on the empirical data collected in the target hardware 
environment for a specially prepared sample.  
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where: sL1 – data storage capacity of the L1 data cache, 
available for a single OpenMP thread [B], sL2 – data 
storage capacity of the L2 cache, available for a single 
OpenMP thread [B], aL1 – set associativity of the L1 data 
cache, aL2 – set associativity of the L2 cache, Df – data 
footprint per OpenMP thread, calculated as per [5] [B]. 
 

It should be emphasized here that variables X1, X2 and 
X3 are related to one another. The size of the problem 
solved within the program is the binding element here.  
 
Verification of the model and conclusions 

Model (1) has been verified for 10 program loops 
(CG_cg_3, CG_cg_4, FT_auxfnct_2, LU_HP_pintgr_11, 
MG_mg_3, UA_diffuse_2, UA_diffuse_3, UA_diffuse_4, 
UA_transfer_11, UA_transfer_16) selected from the NAS 

suite that has been elaborated by the NASA Advanced 
Supercomputing (NAS) Division as software means for 
evaluating the performance of parallel supercomputers [7]. 

For each tested program loop, several different but 
semantically equivalent, parallel versions of a source code 
were generated. For each version, the time of its execution 
on a multi core processor was measured and compared 
with the corresponding estimate produced by model (1). 

Based on this comparison, the quality of model (1) was 
assessed. The assessment criteria were as follows: 

1/ For each tested program loop, the actual execution 
times and the corresponding estimates as per model (1) 
should change in the same direction. 

2/ For each tested program loop, the mean of the 
relative estimation error for particular parallel versions of the 
source code should be as low as possible.  

Criterion 1/ has been met for all tested cases. 
Regarding criterion 2/, results are summarized in Table 1. 

 
Table 1. Estimation errors for the tested program loops  

Loop name 
Mean of the absolute values of 
relative errors of estimates 
calculated as per (1) 

CG_cg_3 13.49 
CG_cg_4 11.93 
FT_auxfnct_2 52.64 
LU_HP_pintgr_11 15.91 
MG_mg_3 28.74 
UA_diffuse_2 6.12 
UA_diffuse_3 25.44 
UA_diffuse_4 22.58 
UA_transfer_11 12.22 
UA_transfer_16 12.74 
 
The achieved results indicate that model (1) offers a real 

possibility of improving iterative compilation.  
A more thorough discussion of the achieved results is 

the object of separate papers.  
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