
128 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 90 NR 2/2014

Maria SKUBLEWSKA-PASZKOWSKA, Jakub SMOŁKA

Institute of Computer Science, Electrical Engineering and Computer Science Faculty, Lublin University of Technology

Arms animation based on human hierarchical tree model

Abstract. The paper presents a human model based on hierarchical tree structure, which is used for creating various 3D animations of the human
body. Two animations are presented as examples. The model uses quaternions for representing rotations. It is implemented in C++ language. Two
integrated software libraries are used for manipulating quaternions and writing standard C3D files which can be further viewed and processed in
various programs such as Mokka.

Streszczenie. Artykuł przedstawia model człowieka oparty na hierarchicznej strukturze drzewa. Może on być wykorzystany do tworzenia animacji
3D ludzkiego ciała. Przedstawiono dwie przykładowe animacje. Do reprezentacji rotacji elementów modelu wykorzystywane są kwaterniony. Model
został zaimplementowany jako program w języku C++. Do przekształcania kwaternionów i zapisywania plików C3D wykorzystano dwie zintegrowane
biblioteki. Standardowe pliki C3D, można otworzyć i dalej przetwarzać w rozmaitych programach takich jak Mokka. (Animacja kończyn górnych
wykorzystująca hierarchiczny model człowieka).

Keywords: arms animation, human hierarchical model, quaternions.
Słowa kluczowe: animacja kończyn górnych, hierarchiczny model struktury człowieka, kwaterniony.

doi:10.12915/pe.2014.02.34

Introduction

3D animation is a common way of visualizing motion
data. There are many techniques to creating and controlling
specific movements. In order to create a movement model,
a way of representing angular position is needed. There are
four main ways of representing angular position in 3D
space: (1) fixed axes, (2) Euler angles, (3) rotation and
angle and (4) quaternions [1]. They can all be used to rotate
the 3D objects.

This paper presents a hierarchical human model and a
method of animating two human arms in 3D. The human
body is represented as the simplified model consisting of 15
vertices (only arms are animated). Each vertex corresponds
to one of the human body joints. Quaternions are used for
representing the angular positions of limbs in space. The
animation takes into account the physical properties and
limitations of the human body. As a result the animation is
realistic.
 For the purposes of this paper, a computer program is
implemented in C++. Two main libraries are utilized by the
piece of software: the biomechanical toolkit (b-tk) [2] and
Eigen [3]. B-tk is used to create and save an animation in
C3D format [4]. Such a file can be opened in various
programs meant for motion capture data viewing and
editing. In our case animation is opened in Mokka [5] in
order to visualise moving arms. The second library – Eigen
– is used to manipulate quaternions describing the
hierarchical model.

Representing rotations with quaternions

Quaternions are represented by four values zyxs ,,, .

They can be expressed as a pair vs, , where s stands for

a scalar and v for a vector consisting of three coordinates
x,y and z [1, 6]. They can be used for both representing
rotations and for interpolating angular positions. They are
also often used for combining various rotations into one
transformation. All rotations can be represented by
quaternions.

A point (x,y,z) – i.e. a point in space -- can be
represented by a quaternion whose scalar part is 0 and the
vector part consists of x, y and z (equation 1) [1].

(1) zyxv ,,,0 ,

Rotation of the point represented by v around the axis
passing through the origin of the coordinate system can be
performed by using quaternion multiplication as shown in
equation 2 [1].

(2)
1' qvqv ,

where: q, v, v’ stand for quaternion, point and rotated point
correspondingly.

Compound rotations may be represented as a product of
quaternions that represent consecutive rotations. A
compound rotation of point v by two quaternions q and p is
given by equation 3 [1].

(3)

 111

111'"

pqvpqpqvpq

pqvqpppvv
,

where v” stands for the point that was subject to compound
rotation.

 The inverse of a quaternion represents rotation of a
point around the same axis and by the same angle but in
the opposite direction (equation 4) [1].

(4) vqqvqqqqvqq 1111

Rotation by an angle θ around the axis determined by

the vector zyxv ,, can be represented by a unit

quaternion q given by the equation 5 [1].

(5) zyxq ,,)2/sin(),2/cos(

 Rotation by an angle θ is equivalent to a rotation by an
angle -θ around an axis whose orientation is the opposite.

The quaternion vsq , and its negation

 vsq , represent the same rotation [1].

As in the case of point rotation, in order to rotate a

vector w a new quaternion has to be created w,0 . It

represents the vector being rotated. A second quaternion q
describes the rotation. The rotated vector w’ is given by the
equation 6 [1].

(6) 1,0',0 qwqw

 Also with vectors compound rotations can be expressed
by a product of several quaternions. For instance, two
vector rotations described by two quaternions p and q can
be compounded as shown in the equation 7 [1].

(7) 111 ,0,0",0 qpwqpqpwpqw

where: w’’ is the vector after the compound rotation.

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 90 NR 2/2014 129

As with points the inverse of the quaternion represents
the rotation of a vector around the same axis by the same
angle but in the opposite direction. The combination of two

rotations represented by q and
1q produces the identity

transformation as shown in equation 8 [1].

(8) wqqwqq ,0,0 11

Human hierarchical tree model

An artificial human model is a hierarchical data
structure. A human is represented with the use of a tree
consisting of linked nodes. The top node is the root. Its
coordinates are given in the global coordinate system.
Coordinates of other nodes are defined in relation to the
root. Each node has a parent (except the root) and at least
one child node (exceptions are the lowest nodes called
leaves). Each node corresponds to a joint and a specific
part of the body that starts in the parent node (a node
higher in the hierarchy)
 In fig. 1 a simplified human silhouette is presented.
Joints/nodes are marked as red dots. Figure 2 shows the
silhouette in a tree form. Nodes contain the names of the
joints they correspond to. An arbitrary assumption is made
as to which nodes represent the left and right side of the
body.

Fig.1. A simplified human silhouette

Fig.2. Human hierarchical tree model

The back of the human silhouette is the root of the
hierarchical tree. It divides the model into two parts
corresponding to the bottom and top part of the body. The
root has three child nodes: left hip, right hip and neck. Each

of the two hip nodes has one child a knee, which in turn
also has one child an ankle, which are leaves of the tree.
The neck node is the start of the top part of the body. It has
three children: left shoulder, right shoulder and the head.
Each shoulder has one child – the elbow which in turn also
has one child – the wrist. The wrists and the head are
leaves of the tree.
 The model imposes restrictions on the relative positions
of objects it describes. When a specific joint is in motion,
other related joints are also moved in a manner defined by
the hierarchy. This means that all nodes located lower in
the hierarchy will be moved according to a transformation
defined for their parent. In other words, moving a joint is
equivalent to moving a body part defined as a sub-tree
consisting of all nodes (joints) taking part in this
transformation.
 The hierarchical model is implemented as a collection of
classes in object oriented C++ language [7]. First is the
Node class whose fragment is shown in figure 3.
.
class Node {
 Node(string jointName);
 btk::Point::Pointer mokkaPoint;
 Vector3d v;
 Transform3d initialTransformation,
 articulationOfTransformation;
 std::vector<Node*> children;
 string partOfBody ;
 Node* createNewNode(int numberOfChildren,
 string jointName);
 void update(Transform3d parentTransform,
 int frameNumber);
}
Fig. 3. Selected fragment of Node class’ implementation

The class consists of: (1) a constructor whose task is to
prepare an object that represents joint named by the
constructor’s parameter, (2) a BTK library’s point data
structure (its value is written to C3D file), (3) current
coordinates that represent the joint’s current position in
space, (4) a joint’s initial transformation and its articulation,
(5) a list of the node’s children (nodes that are lower in the
hierarchy), (6) a joint name (naming joints makes model
manipulation easier), (7) two methods: createNewNode()
and update() which will be described in more detail below.
The former creates a node based on two pieces of
information: the number of children and a joint’s name. The
latter method using two parameters (current node
transformation and the frame number) computes a new
node’s position and also updates the positions of all its
children as shown if figure 4. As one can see that the
positions are updated recursively.

for(int i = 0; i <children.size(); i++){
 children[i]‐> update(newTransform,
 frameNumber);
}
Fig. 4. Updating positions of node’s children

A new node position is obtained by computing a product
of matrices representing: the current node transformation,
the initial node transformation and its articulation. The result
is saved in the mokkaPoint field. The node’s updated
position is needed not only for displaying purposes but also
for com-puting the updated positions of all of the node’s
children.

Second class: HierarchicalModel is responsible for:
(1) constructing the hierarchical model using node objects

130 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 90 NR 2/2014

and (2) creating animations using the model. Class’
definition is shown in figure 5.

class HierarchicalModel
{
 HierarchicalModel();
 Node *back, *leftHip,...
 void createHumanModel();
};
Fig. 5. Class’ structure

The class’s structure is simple – it consists of the
constructor, pointers to 15 nodes that make up the model
and the createHumanModel() method that builds the
model and creates animations. Building the model consists
of creating 15 node objects, defining relations between
them and saving them in the pointer fields. The names are
added for the more intuitive use.
The createHumanModel() method contains all the data
necessary for building a model of a human silhouette and
simulates its movement.

Arms animation based on hierarchical human model
 With the use of the hierarchical model two example
animations are created for the purpose of this paper.
 Creating animation begins with setting up the model. It
is constructed in the following manner: (1) the node objects
are created for each joint represented by the model, (2) the
nodes are organized into a hierarchical data structure
whose root is the node representing the silhouette’s back.
An example of how the hierarchy is built is given in figure 6.
(3) Each node is assigned its initial transformation (this way
a human silhouette in its initial position is created), a new
Transform3D object represents the initial transformation,
(4) each node is assigned an object (saved in the
mokkaPoint field), which is in turn associated with a point
trajectory saved in C3D file, (5) When all the nodes are
setup, their positions are updated by a call to the update()
method.

back‐>children.push_back(leftHip);
back‐>children.push_back(rightHip);
back‐>children.push_back(necktHip);

Fig. 6. Assigning 3 child nodes to the root (the “back” node)

 The model is positioned in such a way that the “back”
node is placed in the origin of the coordinate system, and in
its neutral position both arms are straight (fig. 7).
 Once the model is set up, an animation can be created.
As stated above, two animations are created. The duration
of both animations is set to 5 seconds. The total number of
frames is 125. Each frame contains coordinates of all 15
points that make up the hierarchical model. The first depicts
a person who is moving his/her arm (as if he/she were lifting
weights). In order to describe the initial and final positions of
both wrists, the quaternions are used. Two quaternions
represent the initial and final position of right hand and two
quaternions represent the initial and final position of left
hand. The initial position of the left hand (q0Left in figure 8)
and the final position of the right hand (q1Right) is the same
as their position in the initial setup of the model. This
orientation is represented by the identity quaternion (a zero
angle rotation). The left hand in its final position (q1Left)
and the right hand in its initial position (q0Right) are rotated
by 135 degrees around the X axis. Appropriate quaternion
is generated using AngleAxis class [3].

Fig.7. Initial position of the human hierarchical model (as presented
in the Mokka software)

The animation is created by iterating through all the
frames to be created. For each frame the wrist’s relative
position p in the range of [0;1] is computed. Then the
quaternions describing the intermediate (between initial and
final) positions are obtained using the SLERP interpolation
method [8,9]. New articulation is assigned to the left and
right elbow nodes and the nodes’ positions are updated.

for (int i =1; i <frameCount; i++)
{
 //compute relative position p in the range of
[0;1]
 //compute new position of the right arm
 qRight = q0Right.slerp(p, q1Right);
 // compute new position of the left arm
 qLeft = q0Left.slerp(p, q1left);
 rightElbow‐>articulationOfTransformation =
 qRight; //new articulation of right elbow
 elbowleftElbow‐>articulationOfTransformation =
 qLeft; //new articulation of left elbow
 //recursively update positions of the nodes
 back‐>update(ident, k);
}
Fig. 8. Arm animation

As the animation progresses, the left hand bends while the
right straightens and then the situation reverses. The
bending angle varies from 0 (straight arm) to 135 degrees.
Two joints are animated: the wrist and the elbow. Selected
animation frames are presented in fig. 9.
 The second animation is created similarly. It depicts
straight arms being lifted. The difference is that the
positions of both writs and elbows change in this animation.
Initial and final positions of the animated nodes are given by
four quaternions, two for each arm. The initial rotation of
both arms is identical and set to -90 degrees around the X
axis. The final position of the right arm is -90 degrees and
+90 degrees for the left arm. They are both rotated around
the Y axis. Appropriate quaternions were created again with
the AngleAxis class.

Selected frames from the animation are presented in fig. 10.

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 90 NR 2/2014 131

a) b) c)
Fig. 9. Selected frames from the created animation (arm bending and straightening): a) initial position (first frame), b) in the middle
movement (67th frame); c) at the end of movement (108th frame).

 a) b)

c) d)

Fig.10. Selected frames from arm animation (lifting): a) initial set- first frame; b) 26th frame; c) 63rd frame; d) 108th frame.

Conclusions

This paper presents a hierarchical human model which
is a base for creating animations of selected parts of the
human body. The animations are saved to C3D files which
is one of the standard formats. Quaternions are used for
describing limb movements. The advantage that use of
quaternions offers is that it eliminates side effects such as
gimbal lock [1]. The animation is smooth and resembles
actual human movement.

The hierarchical model is a tool that can be used for
creating animation of the whole human body and also for
comparison with real motion capture data.

REFERENCES
[1] Parent R. Computer Animation: Algorithms & Techniques,

Elsevier 2008
[2] Biomechanical Toolkit (b-tk) documentation,

http://code.google.com/p/b-tk/
[3] Eigen documentation, http://eigen.tuxfamily.org/dox/
[4] The C3D File Format. User Guide. Motion Lab System,

http://www.c3d.org/pdf/c3dformat_ug.pdf

[5] Mokka Documentation, http://b-
tk.googlecode.com/svn/doc/Mokka/0.6/index.html

[6] Andrew J. Hanson, Visualizing Quaternions, Elsevier/Morgan
Kaufmann Publishers 2006

[7] Eckel B. “Thinking in C++”, Helion 2002, ISBN 83-7197-709-3
[8] Dam E. B., Koch M., Lillholm M., “Quaternions, Interpolation and

Animation”, Jyly 1987,
http://web.mit.edu/2.998/www/QuaternionReport1.pdf

[9] Shoemaker K., “Animation Rotation with Quaternion Curves”,
SAN FRANCISCO JULY 22-26, Volume 19, Number 3, 1985,
http://run.usc.edu/cs520-s12/assign2/p245-shoemake.pdf

Authors:
dr inż. Maria Skublewska-Paszkowska, Politechnika Lubelska,
Instytut Informatyki, ul. Nadbystrzycka 36B, 20-618 Lublin, Email:
maria.paszkowska@pollub.pl,
dr inż. Jakub Smołka, Politechnika Lubelska, Instytut Informatyki,
ul. Nadbystrzycka 36B, 20-618 Lublin, Email:
jakub.smolka@pollub.pl,
Uczestnicy projektu Kwalifikacje dla rynku pracy - Politechnika
Lubelska przyjazna dla pracodawcy współfinansowany przez Unię
Europejską w ramach Europejskiego Funduszu Społecznego.

