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Abstract. This paper presents the use of particle filter and neurocontroller to the power converter current control task. The article shows the neural 
network learning method, the impact of particle filter to the quality of the reference signal tracking and the accuracy of the state variables estimation 
by changing particle filter parameters. A method of the noise variance auto-tuning in particle filter was proposed in order to improve the quality of 
estimation. 
 
Streszczenie. W pracy zaprezentowano użycie filtru cząsteczkowego i neurokontrolera do zadania sterowania prądem przekształtnika 
energoelektronicznego. Pokazano metodę uczenia sieci neuronowej, wpływ wykorzystania filtru cząsteczkowego na jakość nadążania za sygnałem 
referencyjnym oraz dokładność estymacji stanu przez zmianę parametrów filtru cząsteczkowego. Zaproponowano także sposób autostrojenia 
wariancji szumów w filtrze cząsteczkowym w celu polepszenia jakości estymacji. (Wykorzystanie filtru cząsteczkowego i neurokontrolera do 
zadania sterowania prądem przekształtnika). 
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Introduction 

H-bridge circuits can be used as an independent voltage 
and current sources, which find use in various fields (e.g., in 
the generation of the reference signal, compensating 
harmonics of non-linear loads or medicine) [1]. In the 
systems where the dynamics is high, the influence of the 
inverter in the control circuit cannot be neglected. It can not 
be treated as unity gain. This hinders the selection of the 
optimal control by means of analytical methods, as the 
mathematical model of the inverter is hard to obtain, mostly 
it is approximated (e.g. using a delay element, or a first 
order transfer function with delay [2]). Using a neural 
network for this task can avoid many disadvantages 
associated with the unknown part of the object and maintain 
a satisfactory control performance. 

In this paper, a method to control the H-bridge inverter 
by using a neural network in the presence of high 
measurements noise is presented. In order to eliminate 
noises, a particle filter is used, which acts as a state 
observer. 
 
Object 
 The test object is a single-phase power electronics  
H-bridge inverter, current control type. Its scheme is shown 
in Figure 1. It consists of the following parts: a transistor 
bridge, LC filter, almost purely inductive load, voltage and 
current meters (not included in Fig. 1). Object parameters: 

 L1 = 250 µH, 
 C = 15 µF, 
 R0 = 0.1 Ω, 
 L0 = 1 mH, 
 Uin = 100 V, 
 fsw = 12.5 kHz, 

where: fsw means switching frequency of transistors 
(transistors are switched bipolar – pairs G1 or G2). 
 The assumption has been made that the system is 
operating in a very noisy environment. Therefore, all 
measurements are subject to errors, which can be 
described by the formula: 

(1)  nxy   

where: y – measured value, x – true value (state variable), 

n – measurement noise, with normal distribution:  
N~(0, (5/6)

2). 

 
Fig.1. Scheme of the inverter with LC filter and load RL 
 
Control scheme 
 For the research, two control block diagrams have been 
used which are shown in Figures 2 and 3. These diagrams 
comprise the object (shown in Figure 1), a neural network 
(neurocontroller) and the particle filter. The last two are 
described in the following sections. The main purpose is to 
generate the control signal u, so that the object can keep up 
with the reference signal rk with the least static and dynamic 
error. 
 The generated signal u is modulated by the PWM with a 
constant carrier frequency, and then fed to the transistors in 
the form of a rectangular waveform signal (G1 and G2).  

 
 
Fig.2. Block diagram of control scheme with neural network 

 
 
Fig.3. Block diagram of control scheme with neural network and 
particle filter 
 
Neurocontroller 
 A neurocontroller (neural network – NN) is a feed-
forward type [3]. It consists of 6 neurons in the hidden layer 
and one neuron in the output layer. Hyperbolic tangent is 
used as an activation function (tansig), due to its 
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monotonicity and a smooth transition saturation. In the 
hidden layer it has a form of tansig(x/α) and in the output 
layer tansig(x/β), where: x – tansig input, α and β – 
correction coefficients (initial value equal to unity).  
 One of the most important parameters of the network is 
Ts. This is the time at which the network takes the inputs, 
performs its calculations and updates the output. It is the 
same as in the case of switching frequency and it is equal 
to 80 µs. It is not allowed to change network output more 
frequently as the switching frequency of the transistors fsw 
could vary. 
 The implementation of structure and input signals to the 
network are shown in Figure 4. The network takes a total of 
nine signals, of which six are delayed (by Ts or 2·Ts). 
Delayed signals are: error between the reference value r 
and current iL0, coil current iL1 and the capacitor voltage UC. 

 
Fig.4. The structure of the neurocontroller; wa

b,c, where w – weight 
value, a – number of layer, b – neuron number in layer a,  
c – number of weight at that neuron, h – activation function 
 
Learning method 
 The initial value of network weights (there are 60 of 
them) were randomly selected from range (-1, 1). Network 
learning has been conducted using Adaptive Interaction 
method [4, 5]. This method is based on the idea of 
approximation of object using a constant (simulation 
assumed that the value to be 1) and the selection of 
weights to minimize error e shown in Figure 3. 
 The learning process was as follows: 
 as reference signal has been set square wave with an 
amplitude of 50 A and frequency of 50 Hz, 
 adaptation was performed until non-fading oscillation 
were achieved, with an average value close to the 
amplitude of the reference signal, as shown in Figure 5 
(input signals were noisy), 
 calculations have been performed in the hidden layer in 
order to search for the greatest value of neurons before the 
activation function and then assigned to the parameter α (α 
= 7000), 
 in the case of the output layer, it has been noticed that 
the sum of signals from the hidden layer neurons is, in the 
most cases, saturating between the value of +1 and -1, or 
oscillating around some mean value, as shown in Figure 6. 
From the behavior of the output signal, one can get the 
impression that the neurocontroller is an ON/OFF regulator. 
To counteract this phenomenon, parameter β has been 
changed  
(β = 0.1), 
 for such selected network parameters further studies 
have been performed (results in a separate chapter). 

 
Fig.5. On-line learning of neural network 
 

 
 
Fig.6. Shape of the control signal u before changing  
parameters α and β 
 

Particle filter 
 Particle filter (PF) is based on the Bayes Filter, whose 
task is to estimate the probability density function (PDF). 
The principle of operation can be represented by the 
expression 

(2)       
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where xk is a state variable at the k-th time step, Yk  is a set 
of observations (measurements) at time steps between 1 
and k. It can be assumed that the object is a Hidden Markov 
Model, which means that the values of the state variables 
depend only on the values at the previous time step 

(3)  
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Each state variable xk is hidden, and the only information 
about it can be derived from the measured values yk and 
the knowledge about the functions gk and fk. 
 Derivation of the equation (2), and a more extensive 
discussion about the Bayes Filter can be found in [6, 7]. 
 Particle Filter (PF) is one of the possibilities of Bayes 
Filter implementation, wherein the set of randomly selected 
particles (drawn from this probability function) approximates 
the continuous posterior p(xk|Yk) [8]. In this approach, each 
particle has a certain value xi and the weight qi, which can 
be written as [9] 
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where δ is the Dirac delta, and k is the time step number. 
 Based on the strong law of large numbers it can be 
stated that the number of particles N tend to infinity imply 
that posterior is equal to the expression (4) 

(5)       
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 Through the use of particles, relatively complex 
calculations based on the probability density functions can 
be represented by simple operations, which, however, must 
be calculated N times. Therefore, it is possible to perform 
parallel processing, which causes the algorithm 
implementation that occurs more and more likely on FPGA 
– they allow algorithm to improve operating speed up to a 
million times [10]. This is especially important for 
multidimensional objects, in which the computational 
complexity grows exponentially with the dimension of the 
task [11]. 
 However, despite of the large computational 
requirements, particle filter can be used to strongly 
nonlinear systems [12] which models are not differentiable 
and also in cases where there is a density of other 
distributions than Gaussian (Kalman filter and its extensions 
– EKF and UKF – may only be used in Gaussian 
distribution models) [13].  
 Thanks to its versatility, PF may be used in a variety of 
problems, such as the parametric estimation problems [14], 
video object tracking [15] and the robot localization 
problems [16]. 
 The first PF algorithm together with a necessary step – 
resampling – was proposed in [17] by Gordon and is called 
Bootstrap Filter (BF). In many sources it is also called the 
SIR algorithm (Sequential Importance Resampling) as it  
relates to Importance Sampling method (it is described in 
detail in [18]), but it should be noted that the BF is a special 
case of the general SIR method. 
 BF method can be represented by algorithm: 
1. Initialization. Set an initial values xi

1 and weights qi
1=

1/N 
; k=1. 

2. Prediction. Draw N particles based on importance 
density p(xk|x

i
k-1). 

3. Update. Calculate particle weights according to  
qi

k  p(yk|x
i
k). 

4. Normalization. Scale weights, so that their sum are 
equal to 1. 

5. Resampling. Draw N particles from resulting posterior. 
6. Estimation. Calculate parameter based on particle 

values.  
7. End of iteration. Increase time step k=k+1, go to step 2. 
 
 Transition model p(xk|x

i
k-1) and the adjustment model 

p(yk|x
i
k) (also called measurement model), based on the 

knowledge of the object structure, the knowledge of the 
transition and adjustment noises PDF (also called system 
and measurement noises), are given. 
 The presented algorithm is the easiest to implement, 
however, there have been proposed many modifications so 
far, such as Particle Filtering with Elite Particles Mean Shift 
[19] or Gaussian Particle Filter [20]. 
 Point 5 of the algorithm still requires an explanation, 
namely, the resampling, which is a very important part of 
the particle filter. SIS algorithm is deprived of this step, 
which causes the degeneration of the particles (one particle 
has a weight close to unity, and the rest of the particles – 
have the weights close to zero) [6].  

 Resampling is a random selection of N new particles 
based on posterior (the particle values drawn in step 2 of 
the algorithm and the weights calculated and normalized in 
steps 3-4), and giving them new weights – equal to 1/N for 
each particle. 
 There have been invented a few different resampling 
methods. The multinomial algorithm with a careless 
implementation may have a very high computational 
complexity. One can also find a residual resampling [21] or 
stratified and rejection resamplings [22]. The authors of this 
article recommend a systematic resampling. 
 This method is as easy to implement as multinomial 
resampling, and its biggest advantage is linear 
computational complexity [23]. It is based on dividing the 
entire range (0;1), from which the draw occurs, into N equal 
intervals when j-th particle is drawn from the range 

(6)   
N
j

N
j ;1

 

 Systematic resampling algorithm is shown below [24] 
 

1. „Prepare discrete cumulative distribution function 
Sk

1:N based on particle weights, so that Sk
1=q1

k and 
Sk

N=1. 
2. Set initial variable value j=1. 
3. For i=1,...,N perform steps 4-6. 

4. Draw a random value from partial uniform 
distribution d~U(i-1/N ;

 i/N). 
5. As long as Sk

j<d increase variable j=j+1. 
6. Remember the drawn value *xi

k=xj
k. 

7. Replace the old set of particles by saving values 
xk=

*xk, set new weights for i=1,...,N: qi
k=

1/N.” 
 

 (7-8) shows the particle filter equations. 
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where xk is the state vector, x1,k is the error value at the k-th 
time step, x2,k is the current value iL1, x3,k is the voltage 
value UC, x4,k is the current value iL0. x5,k, x6,k and x7,k are 
the first 3 state variable values delayed by one sample. This 
has been done in such a way that the particle filter 
describes a hidden Markov process, so all the values of the 
state variables depend only on the value of the previous 
time step (3). 
 The values of nA, nB, nC, nD, dA and dB are calculated on 
the basis of the connections and the parameters of 
individual circuit elements (using zero-order hold method). It 
should be noted that the estimated values of the error e and 
voltage UC are calculated (from the object structure given 
by constants nA, nB, nC, nD, dA and dB) based on estimated 
current value iL1. vk is the value of the transition noise, and 
nk is the value of adjustment noise (both are Gaussian). It is 
very difficult to analytical implementation of H-bridge, 
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because of the transition noise which has such a value that 
the particles are randomly drawn from the transition model 
(step 2 algorithm PF) in order to "search" the correct value 
of current iL1. Based on the maximum possible dynamics of 
the system (the control signal u=1), the variance has been 
designated and its value has been set to σ2

v=
1/121. In the 

case of adjustment noise the variance was chosen 
according to measurement noise (simulation parameter) 
σ2

n=
25/36. 

 

Simulation results of NN (with and without PF) 
 The simulation experiment assumes that the neural 
network has been trained to the noisy signals as it was 
previously shown. Figures 7-9 present the response of the 
object on the reference square-wave signal. 
 

 
Fig.7. Operation of the control system shown in Figure 2 
 

 
Fig.8. Operation of the control system shown in Figure 3 
 

 
Fig.9. Operation of the control system with ideal case (the signals 
collected by the neural network are noise free) 
 

 Initially, in order to compare the quality of responses 
MSE index have been used: 

(9)    
k
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However, it is not possible to use it to compare the dynamic 
states that have occurred in response. Introduced 
complement to the quality index: 

(10)  
k

kLkL ii
k

C
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where: C0 – normalizing constant with a value of 1·e-8. The 
results of such a constructed quality index are shown in 
Table 1. 

 
Fig.10. The system response to the reference signal of sine with  
17-th harmonic for circuit with particle filter 
 

Table 1. Values of the quality index R (10) 

rk NN with noise 
NN with noise 

and PF 
NN without 

noise 
Square-wave 525.70 483.56 479.74 
Sine-wave 
with 17-th 
harmonic 

146.74 126.65 125.86 

 

Simulations results of PF and its modifications 
 The first set of simulations was performed to show the 
quality of tracking each of the state variables based on the 
number of particles in the filter. 
 

 
Fig.11. Quality of state variables observability 
 

 
Fig.12. Chart of output system signal for 3 cases: N=10, N=50 and 
N=500 
 

 Each simulation is related to system from Figure 3. The 
reference signal is assumed to be a square wave with an 
amplitude of 50 A and a frequency of 50 Hz, the simulation 
time Tsim=0.04 s, and the simulation step Tk=1e-7 s. 
 Figure 11 shows the quality of the observation signals 
passed to neurocontroller, and Figure 12 presents three 
waveforms for different values of the particles number N. 
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 It can be seen that while the observation of the error and 
the current iL1 are satisfactory and in most cases better than 
the noisy signal, therefore UC voltage signal quality differs 
significantly from the other two. This is related to a delay of 
current iL1 observation towards the true values  
(see Fig. 13). 

 
 
Fig.13. The true and the estimated values of current iL1 – part of 
the waveform 
 

 To improve the tracking quality, algorithm has to be 
modified in the adjustment noise variance – the arbitrarily 
selected value was too big. 
 Therefore the simulations have been performed in which 
the variance σ2

n was scaled. The number of particles 
assumed to N=50. Simulation time and the sample period 
remain unchanged. The simulation results are shown in 
Figure 14. 
 The results have proven that the best value of the 
scaling factor is about 0.1. In addition, Figure 15 shows a 
comparison of the tracking quality, between the case with 
and without scaled adjustment noise variance. 
 It can be concluded that by scaling the variance σ2

n one 
can significantly reduce the number of particles while 
maintaining a good tracking quality. 

 
 

Fig.14. Quality of state variables observability with varying 
adjustment noise variance 
 

 
Fig.15. Comparison between case with and without scaled variance 
of adjustment noise 
 

Auto-tuning of PF noises 
 The proposed method which improves the obtained 
results by simple scaling of the variance of the adjustment 

noise (Fig. 14-15) works well, however this approach, on 
the one hand, is inconvenient (need to determine for which 
value the best set of the state variables can be gained), on 
the other, is impossible to do in case of on-line control. 
 Therefore, an approach have been proposed, in which 
the noise variances (in PF model) could adapt itself by 
depending on the obtained results during the operation. The 
idea of auto-tuning particle filter is not new, but usually it 
refers only to the change in the particles number N [25, 26].  
 Rules of changing variances are shown in Table 2. 
 

Table 2. Rules changes in the variance σ2
v and σ2

n. 
Premise Conclusion 

Many particles have a weight close to the 
maximum 

Too high σ2
n 

Significant weight values only in a small number 
of particles 

Too low σ2
n 

Small weights of outermost particles Too high σ2
v 

Large weights of outermost particles Too low σ2
v 

 

 This change of the PF parameters causes settling of the 
both values to (approximately) constant level, as shown in 
Figure 16.  
 Figure 17 shows a comparison of the basic method 
(without scaling the variance), the method with reduced 
adjustment variance and the method using auto-tuning. As 
expected, manually set a specific value of variance gives 
the best results.  
 

 
Fig.16. Change of variance values during simulation. σ2

n starts from 
about 0.694; σ2

v starts from about 0.008 
 

 
Fig.17. Compare the performance of PF for different cases of 
changes in variances 
 
Summary 
 This paper realized highly nonlinear control dynamic 
object, which is the power electronics converter in the  
H-bridge configuration. Neural network controller allows to 
treat the object as a linear (frequency range up to 2 kHz) in 
the context of tracking reference signal with an acceptable 
dynamic and static error (maximum to 2%). 
 The following behavior has been observed while using 
neural network. If the network learns to operate with 
rectangular reference signal it is going to be suitable to 
control different reference signal shapes. Static and 
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dynamic errors are almost identical to those of the 
rectangular signal. Besides, the working point (the 
amplitude of the reference signal) is virtually irrelevant in 
terms of static errors. If the amplitude of 50 A has static 
error of 2%, for 150 A it will also be 2%. 
 Simulations have been also carried out on the network 
learned in the absence of noise (the idea of learning is as 
described earlier). The quality index for the respective 
systems differs from one another in a noisy environment 
tests only 1%. It follows that the network has well-learned 
behavior of the object. 
 Based on the simulations, it can be concluded that the 
tracking quality of the state variables affect the accuracy of 
the control (Fig. 12). It is also presented that the number of 
particles has an impact on the obtained results, but the 
number needs not to be very high (Fig. 11). 
 Proposed approach, in which both variances in PF 
evolved each iteration, depended on the values and weights 
of the particles. It was thus obtained worse efficiency than 
the manual setting case, nevertheless this algorithm can 
work on-line. 
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