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Abstract. A uniform basis for analysis of oscillations with essentially non-harmonic shapes, excited by sources of non-smooth or could be 
discontinuous in time signals is presented. The tool presented here employs non-smooth (impact) systems as a basis to describing not only impact, 
but also smooth or even linear dynamics. The focus is put on explicit links between impact dynamics and hyperbolic algebras analogously to the link 
between harmonic oscillations and conventional complex analyses.  Illustrations and results of computer simulations are presented. 
 
Streszczenie. W artykule przedstawiono ujednolicone podstawy analizy drgań, głównie nieharmonicznych przebiegów, wzbudzanych źródłowymi 
sygnałami, niegładkimi lub nieciągłymi w czasie,. W analizie wykorzystano niegładkie (udarowe) systemy do wyznaczania nie tylko nieciągłej, lecz 
także ciągłej lub nawet liniowej dynamiki układu. Nacisk położony został na ustalenie powiązań między dynamiką uderzeniową i algebrą 
hiperboliczną, analogicznie do przypadku drgań harmonicznych i konwencjonalnych liczb zespolonych. Ilustracje i wyniki symulacji komputerowych 
są przedstawione. (Dynamiczne procesy w źródłach sekwencyjno-bipolarnych pulsów zasilających nieliniowe odbiorniki). 
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Introduction 
Over the last decade, the topology and dynamical 

behavior of various nonlinear systems have been 
extensively studied by researchers. Nonlinear dynamical 
systems of various natures (electrical, chemical, biological, 
mechanical, astrophysical, etc.) quite often exhibit complex 
dynamical behavior and undergo bifurcations when one or 
more parameters change. New technologies of components 
and systems exhibiting various favorable properties for the 
practice and constantly increasing many applications have 
created needs for new mathematical tools that they will 
serve to describe the dynamic processes taking place in 
these parts and systems [1, 2, 3].  

The main objective of this paper is to introduce a 
uniform basis for analyses of oscillations with essentially 
non-harmonic shapes, excited by non-smooth or could be 
discontinuous in time sources. It is known that possible 
transitions to non-smooth limits can make investigations 
especially difficult. This is due to the fact that the dynamic 
methods were originally developed within the paradigm of 
smooth oscillations based on the classical theory of 
differential equations, usually avoiding non-differentiable 
and discontinuous functions. Over the last three decades 
general interest in such a tool has experienced continuing 
growth. Presently, however, many theoretical and applied 
areas cover high-energy phenomena accompanied by 
strongly non-linear spatio-temporal behaviors making the 
classical smooth methods inefficient in many cases [4,5, 6]. 

Possible alternatives to such approaches can be built on 
generating models developing essentially nonlinear 
/nonharmonic behaviors as their inherent properties. Such 
models must be general and simple enough in order to play 
the role of physical basis. 

The tool presented here employs nonsmooth (impact) 
systems as a basis to describing not only impact, but also 
smooth or even linear dynamics. This is built on the idea of 
non-smooth time transformations (NSTT) proposed 
originally for strongly nonlinear, but still smooth models [7, 
8, 9]. 

The methodological role of NSTT is to reveal explicit 
links between impact dynamics and hyperbolic algebras 
analogously to the link between harmonic oscillations and 
conventional complex analyses. Currently, this is one of the 
principal challenges at the crossroad between mathematics, 
physics and computer science [10, 11,12, 13].  

 

Non-smooth time transformation  
The theory of nonlinear dynamical systems is technically 

difficult and includes complementary ideas and methods 
from many different fields of mathematics. With the advent 
of computers, starting in the 1960s, it became possible to 
study dynamical systems in real-time and to store data for 
analysis.  

Generating models for strongly nonlinear analytical tools 
with a wide range of applicability must obviously: (i) capture 
the most common features of oscillating processes 
regardless their nonlinear specifics, (ii) possess simple 
enough solutions in order to provide efficiency of 
perturbation schemes, and (iii) describe essentially 
nonlinear phenomena out of the scope of the weakly 
nonlinear methods. 

In the sequel we are focused on the analysis of a class 
of nonconstant solutions of differential equations which are 
next related to fixed points in the scale of complexity, 
namely periodic orbits. The latter are interesting in 
themselves as mathematical representation of periodicities 
in natural and social phenomena. These impose two 
principal features on the dynamical systems by generating 
specific algebraic structures and switching formulations to 
boundary-value problems. Further, dynamical systems with 
discontinuities can be simplified by means of appropriate 
non-smooth transformations of variables [13,14].  

The present approach employs time histories of impact 
systems as new time arguments for strongly nonlinear, but 
smooth periodic oscillations with certain temporal 
symmetries. Despite the strong nonlinearity caused by 
impacts, the limit oscillator is also described by quite simple 
elementary functions such as triangular sine and 
rectangular cosine, say p(t) and ˙ p (t) =e(t)  which are 
presented in Fig.1. These two signals are associated with 
another subgroup of the oscillations namely translation and 
reflection.  

The basic signals p(t) and ˙ p (t) are expressed through 
the standard elementary functions in the closed form as 
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Any presence of signals p(t) and p (t) in further 
developed analytical algorithms is not a simple match of 
different pieces of solutions. On the contrary, it has really 
itself physical basis and invokes specific mathematical tools 
[13]. These impose two principal features on the dynamical 
systems by generating specific algebraic structures and 
switching formulation to boundary-value problems. As a 
result, using discontinuities or distributions for modeling 
dynamical systems take the corresponding differential 
equations out of frames of the classic theory of differential 
equations. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1. Triangular sine p(t) and rectangular cosine )()( tpte  signals 

 
Hyperbolic numbers 

The hyperbolic numbers called also perplex numbers, or 
split-complex numbers, are a two-dimensional commutative 
algebra over the real numbers different from the complex 
numbers [14]. Every hyperbolic number has the form 
(3)                             w =x + uy, 

where x and y are real numbers. The number u is similar to 
the imaginary unit j, except that 

(4)                              u2 = +1. 
Just as for complex numbers, one can define the notion of a 
hyperbolic conjugate number as 

(5)                            w* =x - uy, 

The modulus of a hyperbolic number w = x + uy is given by 
the isotropic quadratic form 

(6)                    
22*|| yxwww   

There are two nontrivial idempotents given by q = (1 − u)/2 
and q∗  = (1 + u)/2. Recall that idempotent means that qq = 
q and q*q∗  = q∗ . Moduli of both these elements are null: 

(7)                            |q|=|q*|=|qq*|=0 

Very often it is convenient to use q and q∗  as an alternate 
basis for the hyperbolic plane. This basis is called the 
diagonal basis or null basis. The hyperbolic complex 
number w can be written in the null basis as 

(6)                        w= x + uy = (x − y)q + (x + y)q∗ . 

Fig. 2 illustrates the differences between complex and 
hyperbolic planes. Note, that in contrast to the circle, each 

of the hyperbola branches is covered exactly once as the 
hyperbolic angle  is varying in the infinite interval.   

Respective portions of the hyperbolic plane show 
subsets with modulus zero (red), one (blue), and minus one 
green). The analogue of Euler's formula for the hyperbolic 
numbers is 

 

(9)                     ) sinh(θ) cosh(θθ)exp(  uu  

where   is standing for  the hyperbolic angle. 
The above equality can be derived from a power series 

expansion using the fact that cosh has only even powers 
while sinh has odd powers only. The hyperbolic angle   is 
twice the area of the sector A0x1 in Fig.2. Also, to hyperbolic 
angles   we can give the geometrical meaning of an area  
= 2area(A0x1) and this area has the same value measured 
in both ‘‘hyperbolic’’ or ‘‘Euclidean’’ way.  By analogy with 
the circular angles  defined on the unitary circle |z|=1, we 
can define cosh( ) and sinh( ) as the abscissa and the 
ordinate of the hyperbola point defined by , respectively. 
Then, such an approach still works for general cases by 
generating specific algebraic structures in terms of the 
coordinates. 
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Fig.2. a) complex plane, b) hyperbolic plane 

In our case, the unipotent u is not a number but the 
discontinuous function of certain physical nature i.e. the 
rectangular cosine wave e(t). Indeed since t is running then 
there is no unique choice for the magnitude of e, whereas 
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always e2 = 1.Therefore, identity (3) generates the 
hyperbolic structure from the very general properties of 
periodic processes. 

Finally, let us mention that the hyperbolic plane has 
another natural basis associated with the two isotropic lines 
separating the hyperbolic quadrants as shown in Fig. 2. The 
transition from one basis to another is given by e±=(1± e)/2 
or, inversely, 1 = e++ e- and e = e+ - e-. The elements e+ and 
e- are mutually annihilating (idempotents) so that e+e-=0, e-

2 
= e- and e+

2 =e+. It is clear also that ee+= e+ and ee-= -e-. 
Note that this basis usually couples the corresponding 
smoothness (boundary) conditions. Therefore, for any 
periodic function x = x(t) whose period is T we can write 
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where  

(11)   )()()( and   )()()( pYpXp-X pYpXpX   

This suggests possible recipes for effective dealing with 
the differential equations of oscillation on entire time 
intervals, despite discontinuity and/or non-smoothness 
points. Such approach is developed to satisfy the matching 
conditions automatically by means of specific coordinate 
transformations on preliminary stages of study. 

Modelling methodology with applications of NSTT 
At the beginning of the twentieth century, Albert Einstein 

developed his theory of special relativity, built upon 
Lorentzian geometry. The hyperbolic numbers, blood   
relatives of the popular complex numbers, serve not only to 
put Lorentzian  geometry on an equal mathematical footing 
with Euclidean geometry; their study also helps researchers 
develop algebraic skills and  concepts necessary for higher 
level  methodology of modelling physical systems. The 
hyperbolic numbers also called the "perplex numbers”, 
serve as coordinates in the Lorentzian plane in much the 
same way that the classic complex numbers serve as 
coordinates in the Euclidean plane [5, 14]. 

The present section is dealing with the differential 
equations of oscillations on entire time intervals, despite 
discontinuity and/or non-smoothness points. The method is 
developed to satisfy the matching conditions automatically 
by means of NSTT on preliminary stages of study. It will be 
shown that such an approach still works for general cases 
by generating specific algebraic structures in terms of the 
coordinates. 

Major features induced by NSTT can be briefly listed as 
follows: 
• Introducing non-smooth temporal variables, in particular 
triangular sine wave p(t), brings the coordinates into the 
algebra of hyperbolic numbers; 
• Under appropriate conditions, differentiation or integration 
of the coordinates keeps the result within the same algebra 
and therefore eases the corresponding manipulations with 
the dynamic systems; 
• Explicit time argument can be used together with the non-
smooth time in order to describe amplitude and/or 
frequency modulated processes. 

The important point to note here is that the NSTT itself 
forms a preliminary stage of analysis finalized by specific 
boundary value problems on standard time intervals. In 
order to develop the method, the triangular sine wave p(t)  
is introduced into dynamical systems as a new temporal 
argument 

To introduce some preliminaries and fundamentals of 
the method based on NSTT let us consider a dynamical 

system described by first-order differential equation with 
respect to the vector-signal x(t) ∈ Rn 
 (12)                         )()( xfx t  

where f(x) is a continuous vector-function, and the over dot 
indicates time derivative [15]. 

In what follows we consider the class of periodic 
oscillations of the period T = 4a, with a > 0 as a constant. 
Note, that the assumption of periodicity is imposed 
automatically by the form of representation for periodic 
solutions. Such formalism is based on the following 
statement: 

Any periodic process x(t) of the period T can be 
expressed through the dynamic state of the impact 
oscillator, {p(t), p (t)} in the form of ‘hyperbolic number’ as 
follows 

(13)                       )()()()( peppt Y Xx   

where  X(p) and Y(p) are unknowns to be determined. 

Equations for X and Y components are obtained by 
substituting (13) into the corresponding differential equation 
of oscillations (12). Then, either analytical or numerical 
procedures can be applied. For instance, one may seek 
solutions in the form of power series with respect to the 
‘oscillating time’ p(t). Therefore, expression (13) can be 
qualified as non-smooth time transformation, t  p(t), on 
the manifold of periodic oscillations and generates the 
hyperbolic structure from the very general properties of 
periodic processes. 

It is important to note that, under some conditions on X 
and Y, combination (13) can be of any class of smoothness 
even though the couple {p(t), p (t)} has singularities at such 
instances t where p(t) = ±1. Moreover, both terms on the 
right-hand side of (13) are essential as those responsible 
for components with different temporal symmetries. This 
follows from linear independence of the elements 1, e(t) and 

(t)e , as those from different classes of smoothness. 
Substituting (13) in (12) yields 

(14)               0 eeaa ff YVXU-Y )()(  

where 
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with ‘ as the symbol of differentiation with respect to p(t) and 
provided that f(X ± Y) is defined. 

By means of the boundary condition for Y(p) we can 
eliminate the periodic singular term e’ = de(t)/d(t), and 
obtain the non-linear boundary value problem on the 
standard interval -1 ≤ p(t) ≤ 1, 
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Note, that representation (13) unfolds the corresponding 
fragment on the entire time interval   < t <  , and  
both terms on the right-hand side of (13) are essential as 
those responsible for components with different temporal 
symmetries. Since the Y-component of the solution 
appeared in (16) to be even with respect to p(t), then both 
of the conditions are satisfied even though one arbitrary 
constant only is available for Y. 
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Numerical search procedure 
Our aim in this section is to expose the effectiveness of 

the presented method for calculating periodic waveforms in 
nonlinear circuits with non-smooth input signals. For this 
purpose we present a mathematical model of two dual 
nonlinear circuits yielding periodic responses under 
excitations determined by sources with sequential-bipolar 
pulse signals. We show that relatively simple circuits with 
one nonlinear element, one independent source, and a 
linear dynamical element may yield quite complex periodic 
response diagrams with appropriate initial conditions 
impacting those diagrams. Secondly, this paper 
complements the analysis of the singularly perturbed 
ordinary differential equations model [12, 16] where a 
different perspective (analysis of concatenation solutions 
and periodizer) was used.  

The nonlinear elements in the two dual circuits shown in 
Fig. 3 have their characteristics vnonl = f(i) (Fig. 3-left) and 
inonl=f(v )    (Fig. 3-right). If we assume that x(t)=x(t+T) 
represent the state variable and f(t) = f(t+T) corresponds to 
the source signals in particular circuits then both circuits 
can be described by the following nonlinear ordinary 
differential equation 
(17)                      )())(()( tkftxkgtx   

where k ≡L-1 for the circuit in Fig. 3a) and k ≡ C-1 for the 
circuit in Fig. 3b). 
 
 
 
 
 
 
 
 
 
Fig. 3.  Nonlinear circuits supplied by sequential-bipolar pulses:    
a) of voltage source, b) of current source 

In the sequel we will continue to focus our attention on 
the issues raised by the practice [18]. It is well known that 
operating status of receivers such as LEDs, solar cells, 
electro-crystallization reactors, lightning arresters, 
semiconductor diodes, etc., can be reflected by the 
characteristics of the nonlinear element  
(18)                                g(x) = hx2  
where x and h denote the state variable and appropriate 
parameter of the given nonlinear element, respectively. We 
also take into account the forcing term in the composed  
form of sequential-bipolar pulses represented by  

(19)                          )()( 10 teFFtf   

where F0 and F1 represent  DC component and magnitude 
of bipolar pulses, respectively.  

Substituting (18) and (19) in (17) yields 

(20)                )()()( tekFkFtkhxtx 10
2   

Following the methodology formulated in the previous 
section we present the solution of equation (20) in the form 

(21)                      )()()()( pepYpX  tx   

where p(t) = p(t+T) and e(t) = e(t+T) are triangular and 
rectangular waves, respectively, with the period T = 4a. 
Components X and Y can be determined on the base of 
relations (16). 

Substituting (21) in (20) gives 

(22)
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where e’ =de/dt, and therefore 
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By introducing new unknowns U = X + Y and V = X - Y, we 
can transform the boundary value problem (23) to the form 
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where F= F0+F1, and G=F0-F1 are constant. 

General solutions of both equations in (24), being 
separable, admit the forms 
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where C1 and C2 are arbitrary constants of integration to be 
determined from the boundary conditions 
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Each real solution of (26) for the constants C1 and C2 
substituted in (25) yields a periodic solution of differential 
equation (20). Thus, we have 

(27)             eVUVUx(t) )()(
2

1

2

1
  

Fig. 4 shows what happens to the steady state variable 
profile as the period of excitation source signal becomes 
twice longer. The model parameters are k =1, h =1.5, F0 = 
2, F1 =1.5. In cases T = 4s and T = 8s, the arbitrary 
constants are C1 = 222.1473, C2 = -0.0799 and C1 = 
17594.31, C2 = -65.767, respectively. Diagrams presented 
below were obtained by using MATLAB computations [17].  

 

 

 

 

 

 

 

 

 

 

 
             

 
Fig.4. Profiles of steady state variables obtained for two different 
periods of the sequential –bipolar source signal 

It is worth noticing that the longer period T = 8s gives 
somewhat smaller average of the state variables, 
comparing with the shorter period T = 4s. All details in this 
subject are beyond the scope of this paper. 
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Discussion, summary and conclusions 
In this paper, a version of nonsmooth argument 

substitutions, specifically - nonsmooth time, is introduced 
with proofs of the related identities. Basic rules for algebraic 
and differential manipulations are described. In particular, 
final section shows how to implement nonsmooth argument 
substitutions in the differential equations of oscillations on 
entire time intervals, despite discontinuity and/or non-
smoothness points. These impose two principal features on 
the behavior of dynamical nonlinear circuits by generating 
specific algebraic structures and switching formulation to 
boundary-value problems. However, the corresponding 
boundary value problems still remain coupled because the 
idempotent basis makes unfortunately boundary conditions 
coupled. The methodological role of non-smooth time 
transformation is revealed exhibiting explicit links between 
impact dynamics and hyperbolic algebras analogously to 
the link between harmonic vibrations and conventional 
complex analyses. It has to be noted that the transformation 
itself implies no constraints on dynamical systems and 
easily applies to both smooth and non-smooth systems [19].   

 In the present case, solution is approximated by the 
triangular sine wave p(t), and can be corrected by higher 
powers of the same triangular sine components. On the 
physical point of view, the model under consideration has to 
be close to the impact oscillator rather than the harmonic 
one. In terms of the new time variable p(t), such an 
assumption simply means that the right-hand side of the 
differential equation of oscillation (17) is small enough to 
justify the following generating system. Any further steps, 
however, should account for physical properties of the 
related systems. 

Although the entire boundary value problem is still 
coupled  through the boundary conditions, the problem 
caused by coupling is eased, however, since algorithms for 
solving equations are often more complicated than those 
applied to the boundary conditions. Therefore, the triangular 
wave time transformation p(t) possesses the unique 
property among all periodic time substitutions because it 
preserves the form of differential equations of conservative 
oscillators.  

In order to deepen the discussion and exhibiting the 
efficiency of the presented approach for the analysis of 
nonsmooth systems let us consider the Duffing oscillator 
with the forcing function Fp(t), where F = const, and p(t)  is 
assumed to be the triangular sine wave of the period 4a. 
The oscillator is represented  

(28)                 )()(3 tFptx(t)xb(t)x    

 where the new temporal argument is the triangular sine.  
Considering periodic solutions and taking into account 

(21) and then substituting it into equation (28) and 
considering the result as a two-component element of the 
hyperbolic algebra, one obtains the boundary value problem 
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where the boundary conditions for X’ and Y  stay for 
elimination of the periodic series of Dirac functions from the 
first and second derivatives of the state variable. 

Although equations (29) have a more complicated form 
as compared to (23), their solutions can be determined in a 
numerical way applying appropriate procedures from the 
program package MATLAB. Note that in accord to the 
Cauchy’s theorem for derivatives the corresponding 

solutions must be at least twice continuously differentiable 
functions of time. 

The evolution of the state variable x(t) and the 
corresponding phase portrait exhibiting periodic steady 
state of the Duffing oscillator are presented in Fig.5. 
Observe, that under some conditions on X and Y, 
combination (21) and (29) can be of any class of  
smoothness even though the couple {p(t), p (t)} has 
singularities at such time instances t where p(t) = ±1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.5. Periodic response of the Duffing oscillator (28) for b=0.5, 
F=10 and T =4s: a) state variable vs. time, b) phase portrait 

)(x)( tty  vs. x(t) 

As it is seen from the diagram in Fig. 5a the state 
variable oscillates with the same period as that of the 
forcing term. The phase portrait shown in Fig.5b exhibits 
typical form of the limit cycle for Duffing oscillators. 

The association of hyperbolic numbers with the two-
dimensional Lorentz’s group of Special Relativity makes 
hyperbolic numbers relevant for physics and stimulate us to 
find their application in the same way as complex numbers 
are applied to Euclidean plane geometry. 

The presented uniform physical basis for analyses of 
oscillations with essentially nonharmonic, non-smooth or 
may be discontinuous time shapes is efficient for identifying 
periodic steady state of nonlinear systems supplied by 
sequential-bipolar form of excitations. It is known that 
possible transitions to non-smooth limits can make 
investigations especially difficult but the method developed 
now that satisfy the matching conditions automatically by 
specific coordinate transformations on preliminary stages of 
study is very useful and promising. The occurrence of such 
algebraic structures seems to be essential feature of the 
approach since it justifies and simplifies analytical 
manipulations with non-invertible temporal substitutions 
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such as NSTT. This point of view is illustrated by physical 
examples, problem formulations and solutions. 
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