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Streszczenie. Pokazano,ze kazdy deskryptowy obwdd elektryczny jest uktadem o peku regularnym. Puktowa zupefno$¢ i punktowa degeneracja
zostaty przebadane przy uzyciu odwrotno$ci Drazina macierzy. Podano warunki punktowej zupefno$ci i punktowej degeneracji deskryptowych
obwodéw elektrycznych. Rozwazania zilustrowano przyktadem de skryptowego obwodu elektrycznego. Analiza punktowej zupefnosci i
punktowej degeneracji deskryptowych obwodow elektrycznych przy uzyciu odwrotnos$ci Drazina

Abstract. It is shown that every descriptor electrical circuit is a linear system with regular pencil. The pointwise completeness and pointwise
generacy of the descriptor electrical circuits is analyzed by the use of Drazin inverse of matrices. Conditions for the pointwise completeness and

pointwise generacy of the descriptor electrical circuits are established and illustrated by an example.
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Introduction

Descriptor (singular) linear systems have been
considered in many papers and books [1, 2, 5-8, 11-16, 21-
23, 28]. The eigenvalues and invariants assignment by
state and output feedbacks have been investigated in [14,
22] and the minimum energy control of descriptor linear
systems in [16]. In positive systems inputs, state variables
and outputs take only non-negative values [9, 20].
Examples of positive systems are industrial processes
involving chemical reactors, heat exchangers and distillation
columns, storage systems, compartmental systems, water
and atmospheric pollution models. A variety of models
having positive linear behavior can be found in engineering,
management science, economics, social sciences, biology
and medicine, etc. The positive fractional linear systems
and some of selected problems in theory of fractional
systems have been addressed in monograph [22].
Descriptor standard positive linear systems by the use of
Drazin inverse has been addressed in [1, 2, 6, 11-13, 21,
23]. The shuffle algorithm has been applied to checking the
positivity of descriptor linear systems in [12]. The stability of
positive descriptor systems has been investigated in [28].
Reduction and decomposition of descriptor fractional
discrete-time linear systems have been considered in [21].
A new class of descriptor fractional linear discrete-time
system has been introduced in [23].
The pointwise completeness and pointwise degeneracy for
standard and fractional linear systems have been
investigated in [3-5, 10, 17-19, 24-27]. The Drazin inverse
of matrices has been applied to find the solutions of the
state equations of the fractional descriptor continuous-time
linear systems with regular pencils in [13].
In this paper the Drazin inverse of matrices is applied to
analysis of pointwise completeness and pointwise generacy
of descriptor electrical circuits.
The paper is organized as follows. In section 2 some
definitions, lemmas and theorems concerning the descriptor
continuous-time linear systems and the Drazin inverse
matrices are recalled. The regularity of the descriptor
electrical circuits is addressed in section 3. It is shown that
every descriptor electrical circuit is a linear system with
regular pencil. The pointwise completeness and pointwise
generacy of the descriptor electrical circuits is analyzed in
section 4. Concluding remarks are given in section 5.

The following notation will be used: ‘R - the set of real
numbers, R™™ - the set of nxm

R" =R, R”™ . the set of nxm matrices with

real matrices and

nonnegative entries and R" =R™' M, - the set of nxn
Metzler matrices (real matrices with nonnegative off-
diagonal entries), |, - the nxn identity matrix, ker A (im A)
- the kernel (image) of the matrix A.

Preliminaries
Consider the autonomous
continuous-time linear system

(1) EX(t) = AX(D),

fractional descriptor

where x(t) e R" is the state vector, E,Ae R™".

It is assumed that det E = 0 but the pencil (E, A) of (1) is
regular, i.e.

(2) det[Es— A]# 0 for some s€C

where C is the field of complex numbers.
Assuming that for some chosen ceC, det[Ec—A]#0

and premultiplying (1) by [Ec— A]_1 we obtain

(3a)  Ex(t)= Ax(t),
where
(3b) E=[Ec—AJ'E, A=[Ec—A]'A.

Note that the equations (2.1) and (2.3a) have the same
solution X(t).

Definition 1. [6, 15] The smallest nonnegative integer q is
called the index of the matrix E € R™" if

(4) rank E% =rank E9*".

Definition 2. [6, 15] A matrix EC is called the Drazin
inverse of E e R™" if it satisfies the conditions

(5a) EEP =EPE,
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EPEEP - EP,
EPE® — 9,

(5b)
(5¢c)

where ¢ is the index of E defined by (2.3).

The Drazin inverse EP of a square matrix E always
exists and is unique [6, 15]. If detE #0 then EP =E'.
Some methods for computation of the Drazin inverse are
given in [15].

Lemma 1. [6, 13, 15] The matrices E and A defined by
(5b) satisfy the following equalities

(6a) AE=EA and APE=EAP, EPA=AEP,
APEP —EPAP
(6b) ker A nkerE = {0},
— J 0 — -1
(6c) E :T{ }Tl, EP =T{] O:IT‘l ,
0 N 0 O
detT %0, J e RN is nonsingular,
N e R"""™ is nilpotent, n,+n, =n,
6d)  (1,-EEP)AAP =| -EEP and

(1,—-EEP)EAP) =0.
Theorem 1. [13] The solution to the equation (1) is given by
) x(t)=eE MEEDw
where W e R" is arbitrary.
From (7) we have
(8) X(0) = X, = EE°w
and
9 X eim(EEP)

where im denotes the image of EEP .
Theorem 2. Let

(10)  P=EEP and Q=EPA.
Then:

PX=P for k=2,3,...,
PQ=QP=Q,

(11a)
(11b)

(11c)
Proof is given in [13].

Regularity of descriptor linear electrical circuits
Consider the electrical circuits composed of resistors,
condensators, coils and voltage (current) sources. It is well-
known that such electrical circuits are described by the
equation (1) if as the state variables (components of the
state vector x) the voltages on the condensators and
currents in the coils are chosen [15, 22]. In this section it will
be shown that the descriptor electrical circuit are linear
systems with regular pencils.
Theorem 3. Every electrical circuit is a descriptor system if
it contains at least one mesh consisting with only ideal
capacitors and voltage sources or at least one node with
branches with coils.
Proof. If the electrical circuit contains at least one mesh
consisting of branches with ideal capacitors and voltage
sources then the rows of the matrix E corresponding to the

meshes are zero rows and the matrix E is singular. If the
electrical circuit contains at least one node with branches
with coils then the equations written on Kirchhoff's current
law for these nodes are algebraic ones and the
corresponding rows of E are zero rows and it is singular. o
Theorem 4. Every descriptor electrical circuit is a linear
system with regular pencil.

Proof. It is well-known [15, 22] that for a descriptor
electrical circuit with n branches and g nodes using current
Kirchhoff's law we can write g - 1 algebraic equations and
the voltage Kirchhoff's law n — g + 1 differential equations.
The equalities are linearly independent and can be written
in the form (1). From linear independence of the equations it
follows that the condition (2) is satisfied and the pencil of
the electrical circuit is regular.

Example 1. Consider the descriptor electrical circuit shown
in Fig. 1 with given resistances R;, R,, R;; inductances L,
L,, L3 and source voltages e, and e,.

¥

~ 2
—
)
e &

1
©

Fig. 1. Electrical circuit of Example 1.

Using Kirchhoff's laws we can write the equations
. di . di

12a) e =Ry +L —+Ryi; + Ly —

(12a) =Rt R

diy

. di, .
&, = Ryi, + LzﬁJr Ryiy + Ly <2

(12b) -

(12¢)  0=i, +i, —i

The equations (3.1) can be written in the form (1), where

I 6 L 0 L
(13)x =1, |, U:L1 : E=|0 L L
iy 2 0 0 0
R, 0 -R 10
A=l 0 -R, -Ry|,B=[0 1
| B 10 0

The assumption (2) for the electrical circuit is satisfied,
since

L 0 L
(14)  detE=[0 L, Ly|=0
0 0 0

and
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Lis+R 0 L;s+R,
det[Es—A]=| 0 L,s+R, Lys+R,
-1 -1 1

=[L(L+L)+LL]s?
+R(L+ L)+ Ry (L + L)+ Ry (L +1,y) s

+R; (R, + Ry )+ R,Ry

(15)
Therefore, the electrical circuit is a descriptor system with
regular pencil.

4. Pointwise completeness and pointwise degeneracy
Consider the descriptor linear electrical circuits

composed of resistors condensators, coils and voltage

(current) source described by the equation (1) for u(t)=0,

t>0.
Definition 3. The descriptor electrical circuit (1) (for
u()=0, t=0)is called pointwise complete for t =t; if for

every final state X; e R" belonging to the set

.
(16)  x; eim[e” "x,]

there exists a vector of initial conditions X, €imEE ] X,
such that X(t;)=X; € X¢ .
Remark 1. In general case the set of initial conditions X,

and the set of final state X; are different. For example, if

1 A _| O ap®
Xo—lm[o} and e _L\m(t) azz(t)] a,(May, (1) =0,

0
t>0 then by (16) we obtain X; =im|: }
ay,(t)

Note that the initial state x, and the final state x; of the
descriptor electrical circuits satisfy the equations written by
the use of the Kirchhoff’s laws.

Theorem 5. The descriptor electrical circuit (1) is pointwise

complete for any t=1; and every final state X; eR"
satisfying (1).
Proof. Substituting in (7) t =t; we obtain

o
A7) xp=e" M,
and
L —
(18) Xo =€ X; €im[EE™]
o
since the matrix e~ f

is nonsingular for any matrix
EPA, t; 20.0

Definition 4.2. The descriptor electrical circuit (1) (for
u(t)=0, t>0) is called pointwise degenerated in the

direction v for t=t; if there exists a nonzero vector v e R"

such that for all initial conditions X, eim[ED] the solution
of (1) satisfy the condition

(19) Vv'x; =0

where T denotes the transpose.
Theorem 6. The descriptor electrical circuit (1) is pointwise
degenerated in the direction v defined by

(200 V'E=0
forany t; =0 and all initial conditions X, eim[ED] .

Proof. Postmultiplying (20) by EPw and using X, = EEPw
and (19) we obtain

(21)  V'EEPw=v"x,=0.
Taking into account

—D—. o (EDRA#K
(22) eEDAtf :Z(E At)

ko K
and (17) we obtain
o~ = (EPAt)f -
e =VT{EEDAW+Z%EEDAW}
k=1 :
o~ & (EPAt) -
(23) =vTE[EDAW+Z(—|f)EDAW}=O
k=1

since (8) and (20) hold. o
From (20) and (21) for any t; we have the following
conclusion.

Conclusion 1. The state vector X(t)of the descriptor
electrical circuit satisfies the condition

24)  V'xt)=0

for t>0.
Example 2. (Continuation of Example 1) Substituting (12)
into (14) we obtain

101 -1 0 -1
25 E=|0 1 1|, A= 0 -1 —1|.
000 11 -1

The matrix A given by (25) is nonsingular and we choose ¢
=0 and we obtain

E=[Ec-Al'E=[-A]"'E

(262) 10110112—11
= 1 1] |0 1 1|=—-1 2 1}
o1t looof Y112

100

(26b) A=[Ec—A'A=[-A]'A=—-0 1 0]

0 0 1

To compute the Drazin inverse of (26) we use the
Procedure A.1 (given in Appendix).
Step 1. Using (26a) and (A.1) we obtain

(27a) E=VW
where
2 -1
1 1 01
(27b) V=—-1 2 || W= .
3 | | 011

Step 2. From (A.2), (26a) and (27b) we have
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2 -1 112 -1

0 11 ] 10
T £ I El I e PR
11 2171 1

Step 3. Using (A.3), (27b) and (28) we obtain

_ 1
(28) WEV = {0

2 -1 1
(29) ED=V[\NEV]‘1W:VW:E:% 121
112

From (29) and (26b) we have

1—2 1 -1
(30) EDK:E 1 -2 -1
-1 -1 -2
and the characteristic polynomial of (30) has the
form
| |
S+— —— =
3 3
(31) det[l;s—E~A]= -3 S+— 3 =5 +25"+5S
| 1 2
3 3 3

and its zeros are S, =S, =—1, $; =0.

Note that the characteristic polynomial of the pair (25) has
the form

s+1 0 s+1
(32) det[Es— Al=| 0 s+1 s+11:3(32+2s+1)
-1 -1 1

has the same zeros s, =S, =—1, 53 =0.
Using the Sylvester formula [15] and (4.15) we obtain

12e“+1 l-et et-l
D=
(33) eFA—_|1-et 2e'+1 e'-1
3 -t -t -t
e -1 e -1 2e +1
From (21) and (26a) we have
2 -1 1
VIE=[v, v, vﬂ% -1 2 1
1 1 2
(34) =%[2v1—v2+v3 2V, =V +V3 2V5 4+ V)V, ]
=[0 0 0]
and VI =[1 1 -1].
The set of admissible initial conditions is
| 2 -1 1|g
X, =im[EEP]==|-1 2 1|a,
1 1 2|a
(35)
: 28, —a, + &
=—|2a,—a +a
2a;+a, +a,

for arbitrary a, k=123,ie. X, € X, .

Note that the admissible initial conditions satisfy the
equation (21) since
20— +ay +2a, - +a3—-(2ay;+a,+a,)=0 for any
values of a;, a, and as.

From (17) and (33) we have

227 41 1-eT e o1 [Txg
7Dﬂtf 1 ~t¢ ~ts —t¢
Xf =e Xo=§ 1-e 26 T+l e T =1 | Xy
e o1 e o1 27 41 Xy
(36)

,tf

(2X19 = Xp0 + X350 )€
—tf

=| (2Xy9 — X1 + X30)8

(2Xp3 + X9 +Xy0)€

Taking into account (36) and V' =[1 1 —1]itis easy to
check that VTxf =0 for any admissible initial conditions

belonging to the set (35).
The descriptor electrical circuit is pointwise completeness
for any t; and x; given by (36) and is pointwise degenerated

in the direction V' =[1 1 -1].

Concluding remarks

The Drazin inverse of matrices has been applied to
analysis of the regularity pointwise completeness and the
pointwise generacy of descriptor electrical circuits
composed of resistors, condensators, coils and voltage
(current) sources. It has been shown that such electrical
circuits are descriptor continuous-time linear system with
regular pencils (Theorem 4). Conditions for the pointwise
completeness and pointwise generacy have been
established (Theorem 5 and 6). The considerations have
been illustrated by simple descriptor electrical circuit. The
considerations can be extended to the fractional descriptor
electrical circuits.

Appendix
Procedure for computation of Drazin inverse matrices
To compute the Drazin inverse EP of the matrix

E e R™" defined by (3b) the following procedure is
recommended.
Procedure A.1.

Step 1. Find the pair of matrices V e R™", W e R™"

such that

(A1) E =VW , rankV =rankW =rankE =r .
As the r columns (rows) of the matrix V (W) the r
linearly independent columns (rows) of the matrix
E can be chosen.

Step 2. Compute the nonsingular matrix

(A2) WEV eR™".

Step 3. The desired Drazin inverse matrix is given by

(A3) EP=VWEVMW .

Proof. It will be shown that the matrix (A.3) satisfies the
three conditions (7) of Definition 2. Taking into account that

detWN =0 and (A.1) we obtain
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WEV]™ = WvWVT™ =WV wy .
Using (7a), (A.1) and (A.4) we obtain

(A4)

EEP =VWV[WEV]'W =VWV[WV ] 'WV ] 'w

(A.5a)
=V[WV]'w
and
EDE _ v/ -l
(A5b) EPE =V[WEV ] 'wvw

VWV WV T 'WVYW =VWV W

Therefore, the condition (5a) is satisfied. To check the
condition (5b) we compute

EPEEP =V[WEV ] 'WVWV[WEV]'W
=V [WVWV ] 'WVWV [WEV ]"'W
=V[WEV]'W =EP.

(A.6)

Therefore, the condition (7b) is also satisfied. Using (5c),
(A.1), (A.3) and (A.4) we obtain

EPEI! =V[WEV ] 'W W )4
=V WV WV T 'wvy dw 9+t
=VIWVT'VIW S =y w e = vw)d = E ¢

(A7)

where q is the index of E.
Therefore, the condition (5¢) is also satisfied.
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