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Introduction 
Descriptor (singular) linear systems have been 

considered in many papers and books [1, 2, 5-8, 11-16, 21-
23, 28]. The eigenvalues and invariants assignment by 
state and output feedbacks have been investigated in [14, 
22] and the minimum energy control of descriptor linear 
systems in [16]. In positive systems inputs, state variables 
and outputs take only non-negative values [9, 20]. 
Examples of positive systems are industrial processes 
involving chemical reactors, heat exchangers and distillation 
columns, storage systems, compartmental systems, water 
and atmospheric pollution models. A variety of models 
having positive linear behavior can be found in engineering, 
management science, economics, social sciences, biology 
and medicine, etc. The positive fractional linear systems 
and some of selected problems in theory of  fractional 
systems have been addressed in monograph [22]. 
Descriptor standard positive linear systems by the use of 
Drazin inverse has been addressed in [1, 2, 6, 11-13, 21, 
23]. The shuffle algorithm has been applied to checking the 
positivity of descriptor linear systems in [12]. The stability of 
positive descriptor systems has been investigated in [28]. 
Reduction and decomposition of descriptor fractional 
discrete-time linear systems have been considered in [21]. 
A new class of descriptor fractional linear discrete-time 
system has been introduced in [23].  
The pointwise completeness and pointwise degeneracy for 
standard and fractional linear systems have been 
investigated in [3-5, 10, 17-19, 24-27]. The Drazin inverse 
of matrices has been applied to find the solutions of the 
state equations of the fractional descriptor continuous-time 
linear systems with regular pencils in [13]. 
In this paper the Drazin inverse of matrices is applied to 
analysis of pointwise completeness and pointwise generacy 
of descriptor electrical circuits. 
The paper is organized as follows. In section 2 some 
definitions, lemmas and theorems concerning the descriptor 
continuous-time linear systems and the Drazin inverse 
matrices are recalled. The regularity of the descriptor 
electrical circuits is addressed in section 3. It is shown that 
every descriptor electrical circuit is a linear system with 
regular pencil. The pointwise completeness and pointwise 
generacy of the descriptor electrical circuits is analyzed in 
section 4. Concluding remarks are given in section 5. 

The following notation will be used:   - the set of real 

numbers, mn  - the set of mn  real matrices and 
1 nn , mn

  - the set of mn  matrices with 

nonnegative entries and 1
  nn ,

 nM
 
- the set of nn  

Metzler matrices (real matrices with nonnegative off-
diagonal entries), nI - the nn  identity matrix, ker A (im A) 

- the kernel (image) of the matrix A. 
 
Preliminaries  

Consider the autonomous fractional descriptor 
continuous-time linear system 

(1)  ( ) ( )Ex t Ax t , 

where ntx )(  is the state vector, nnAE , . 

It is assumed that det E = 0 but the pencil (E, A) of (1) is 
regular, i.e. 

(2)  0]det[  AEs  for some Cs  

where C is the field of complex numbers. 
Assuming that for some chosen Cc , 0]det[  AEc  

and premultiplying (1) by 1][  AEc  we obtain 

(3a) )()( txAtxE  , 

where  

(3b) EAEcE 1][  , AAEcA 1][  . 

Note that the equations (2.1) and (2.3a) have the same 
solution )(tx . 

Definition 1. [6, 15] The smallest nonnegative integer q is 

called the index of the matrix nnE   if  

(4)  1rank rank  qq EE . 

Definition 2. [6, 15] A matrix DE  is called the Drazin 

inverse of nnE   if it satisfies the conditions 

(5a) EEEE DD  , 
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(5b) DDD EEEE  , 

(5c) qqD EEE 1 , 

where q is the index of E  defined by (2.3). 

The Drazin inverse DE  of a square matrix E  always 

exists and is unique [6, 15]. If 0det E  then 1 EE D . 
Some methods for computation of the Drazin inverse are 
given in [15]. 

Lemma 1. [6, 13, 15] The matrices E  and A  defined by 
(5b) satisfy the following equalities 

(6a) AEEA   and DD AEEA  , DD EAAE  , 
DDDD AEEA  , 

(6b) }0{kerker  EA , 

(6c) 1

0

0 








 T

N

J
TE , 1

1

00

0 













 T

J
TE D , 

0det T , 11 nnJ  , is nonsingular, 
22 nnN   is nilpotent, nnn  21 , 

(6d) D
n

DD
n EEIAAEEI  )(  and 

0))((  qDD
n AEEEI . 

Theorem 1. [13] The solution to the equation (1) is given by 

(7)  wEEetx DtAE D
)( , 

where nw  is arbitrary. 
From (7) we have  

(8)  wEExx D 0)0(  

and  

(9)  )(im0
DEEx   

where im denotes the image of DEE . 
Theorem 2. Let 

(10) DEEP   and AEQ D . 

Then: 

(11a) PPk   for k = 2,3,…, 
(11b) QQPPQ  , 

(11c) )()( 00 ttP  . 

Proof is given in [13]. 
 
Regularity of descriptor linear electrical circuits 
 Consider the electrical circuits composed of resistors, 
condensators, coils and voltage (current) sources. It is well-
known that such electrical circuits are described by the 
equation (1) if as the state variables (components of the 
state vector x) the voltages on the condensators and 
currents in the coils are chosen [15, 22]. In this section it will 
be shown that the descriptor electrical circuit are linear 
systems with regular pencils. 
Theorem 3. Every electrical circuit is a descriptor system if 
it contains at least one mesh consisting with only ideal 
capacitors and voltage sources or at least one node with 
branches with coils. 
Proof. If the electrical circuit contains at least one mesh 
consisting of branches with ideal capacitors and voltage 
sources then the rows of the matrix E corresponding to the 

meshes are zero rows and the matrix E is singular. If the 
electrical circuit contains at least one node with branches 
with coils then the equations written on Kirchhoff's current 
law for these nodes are algebraic ones and the 
corresponding rows of E are zero rows and it is singular. □ 
Theorem 4. Every descriptor electrical circuit is a linear 
system with regular pencil. 
Proof. It is well-known [15, 22] that for a descriptor 
electrical circuit with n branches and q nodes using current 
Kirchhoff's law we can write q - 1 algebraic equations and 
the voltage Kirchhoff's law n – q + 1 differential equations. 
The equalities are linearly independent and can be written 
in the form (1). From linear independence of the equations it 
follows that the condition (2) is satisfied and the pencil of 
the electrical circuit is regular. 
Example 1. Consider the descriptor electrical circuit shown 
in Fig. 1 with given resistances R1, R2, R3; inductances L1, 
L2, L3 and source voltages e1 and e2. 
 

 
 
Fig. 1. Electrical circuit of Example 1. 
 
Using Kirchhoff's laws we can write the equations 

(12a) 31
1 1 1 1 3 3 3

dd

d d

ii
e R i L R i L

t t
     

(12b) 32
2 2 2 2 3 3 3

dd

d d

ii
e R i L R i L

t t
     

(12c) 1 2 30 i i i    

The equations (3.1) can be written in the form (1), where 

(13)
1

2

3

i

x i

i

 
   
  

, 1

2

e
u

e

 
  
 

, 
1 3

2 3

0

0 ,

0 0 0

L L

E L L

 
   
  

 

1 3

2 3

0

0

1 1 1

R R

A R R

  
    
  

, 

1 0

0 1

0 0

B

 
   
  

. 

The assumption (2) for the electrical circuit is satisfied, 
since 

(14) 
1 3

2 3

0

det 0 0

0 0 0

L L

E L L   

and 
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 

 
     

 

1 1 3 3

2 2 3 3

2
1 2 3 2 3

1 2 3 2 1 3 3 1 2

1 2 3 2 3

0

det 0

1 1 1

L s R L s R

Es A L s R L s R

L L L L L s

R L L R L L R L L s

R R R R R

 
   

 

    
       

  
(15) 
Therefore, the electrical circuit is a descriptor system with 
regular pencil. 
 
4. Pointwise completeness and pointwise degeneracy 
 Consider the descriptor linear electrical circuits 
composed of resistors condensators, coils and voltage 
(current) source described by the equation (1) for 0)( tu , 

0t . 
Definition 3. The descriptor electrical circuit (1) (for 

0)( tu , 0t ) is called pointwise complete for ftt   if for 

every final state n
fx   belonging to the set 

(16) ][im 0xex f
D tAE

f   

there exists a vector of initial conditions 00 ][im XEEx D   

such that fff Xxtx )( . 

Remark 1. In general case the set of initial conditions 0X  

and the set of final state fX  are different. For example, if 











0

1
im0X  and 










)()(

)(0

2221

12

tata

ta
e tAE D

, 0)()( 2112 tata , 

0t  then by (16) we obtain 









)(

0
im

21 ta
X f . 

Note that the initial state x0 and the final state xf of the 
descriptor electrical circuits satisfy the equations written by 
the use of the Kirchhoff’s laws. 
Theorem 5. The descriptor electrical circuit (1) is pointwise 

complete for any ftt   and every final state n
fx   

satisfying (1). 
Proof. Substituting in (7) ftt   we obtain  

(17) 0xex f
D tAE

f   

and 

(18) ][im0
D

f
tAE

EExex f
D

 
 

since the matrix f
D tAE

e  is nonsingular for any matrix 

AE D , 0ft . □ 

Definition 4.2. The descriptor electrical circuit (1) (for 
0)( tu , 0t ) is called pointwise degenerated in the 

direction v for ftt   if there exists a nonzero vector nv   

such that for all initial conditions  ][im0
DEEx   the solution 

of (1) satisfy the condition  

(19) 0f
T xv  

where T denotes the transpose. 
Theorem 6. The descriptor electrical circuit (1) is pointwise 
degenerated in the direction v defined by 

(20) 0EvT  

for any 0ft  and all initial conditions ][im0
DEEx  .  

Proof. Postmultiplying (20) by wE D  and using wEEx D0  

and (19) we obtain 

(21) 00  xvwEEv TDT . 

Taking into account 

(22) 





0 !

)(

k

kD
tAE

k

tAE
e f

D

 

and (17) we obtain 

(23) 0
!

)(

!

)(

1

1








































k

D
k

f
D

DT

k

D
k

f
D

DT
f

T

wAE
k

tAE
wAEEv

wAEE
k

tAE
wAEEvxv

 

since (8) and (20) hold. □ 
From (20) and (21) for any tf we have the following 
conclusion. 
Conclusion 1. The state vector )(tx of the descriptor 

electrical circuit satisfies the condition 

(24) 0)( txvT  

for 0t . 
Example 2. (Continuation of Example 1) Substituting (12) 
into (14) we obtain 

(25) 







































111

110

101

,

000

110

101

AE . 

The matrix A given by (25) is nonsingular and we choose c 
= 0 and we obtain 

(26a) 
,

211

121

112

3

1

000

110

101

111

110

101

][][
1

11



























































 EAEAEcE

 

(26b) .

100

010

001

][][ 11
















  AAAAEcA  

To compute the Drazin inverse of (26) we use the 
Procedure A.1 (given in Appendix). 
Step 1. Using (26a) and (A.1) we obtain 

(27a) VWE   
  where 

(27b) 





























110

101
,

11

21

12

3

1
WV . 

Step 2. From (A.2), (26a) and (27b) we have 
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(28) 

























































10

01

11

21

12

3

1

211

121

112

3

1

110

101
VEW . 

Step 3. Using (A.3), (27b) and (28) we obtain 

(29) 



















 

211

121

112

3

1
][ 1 EVWWVEWVE D . 

From (29) and (26b) we have 

(30) 






















211

121

112

3

1
AE D  

and the characteristic polynomial of (30) has the 
form 

(31)  sss

s

s

s

AEsI D 







 23
3 2

3

2

3

1

3

1
3

1

3

2

3

1
3

1

3

1

3

2

]det[  

  and its zeros are 121  ss , 03 s . 

Note that the characteristic polynomial of the pair (25) has 
the form 

(32) )12(3

111

1110

101

]det[ 2 





 ssss

ss

AEs  

has the same zeros 121  ss , 03 s . 

Using the Sylvester formula [15] and (4.15) we obtain 

(33) 



























1211

1121

1112

3

1

ttt

ttt

ttt

tAE

eee

eee

eee

e
D

. 

From (21) and (26a) we have 

(34) 

]000[

]222[
3

1

211

121

112

3

1
][

213312321

321

























vvvvvvvvv

vvvEvT

 

and ]111[ Tv . 

The set of admissible initial conditions is 

(35) 



























































213

312

321

3

2

1

0

2

2

2

3

1

211

121

112

3

1
][im

aaa

aaa

aaa

a

a

a

EEX D

 

for arbitrary 3,2,1kak , i.e. 00 Xx  . 

Note that the admissible initial conditions satisfy the 
equation (21) since 

0)2(22 213312321  aaaaaaaaa  for any 

values of a1, a2 and a3. 
From (17) and (33) we have 

(36)















































































f

f

f

fff

fff

fff

f
D

t

t

t

ttt

ttt

ttt

tAE
f

exxx

exxx

exxx

x

x

x

eee

eee

eee

xex

)2(

)2(

)2(

1211

1121

1112

3

1

201003

301020

302010

30

20

10

0

 

since by (35) 0302010  xxx . 

Taking into account (36) and ]111[ Tv  it is easy to 

check that 0f
T xv  for any admissible initial conditions 

belonging to the set (35). 
The descriptor electrical circuit is pointwise completeness 
for any tf and xf given by (36) and is pointwise degenerated 

in the direction ]111[ Tv . 
 

Concluding remarks 
 The Drazin inverse of matrices has been applied to 
analysis of the regularity pointwise completeness and the 
pointwise generacy of descriptor electrical circuits 
composed of resistors, condensators, coils and voltage 
(current) sources. It has been shown that such electrical 
circuits are descriptor continuous-time linear system with 
regular pencils (Theorem 4). Conditions for the pointwise 
completeness and pointwise generacy have been 
established (Theorem 5 and 6). The considerations have 
been illustrated by simple descriptor electrical circuit. The 
considerations can be extended to the fractional descriptor 
electrical circuits. 

 

Appendix 
Procedure for computation of Drazin inverse matrices 

To compute the Drazin inverse DE  of the matrix 
nnE   defined by (3b) the following procedure is 

recommended. 
Procedure A.1. 

Step 1. Find the pair of matrices rnV  , nrW   
such that 

(A.1) VWE  , rEWV  rank rank rank . 

As the r columns (rows) of the matrix V (W) the r 
linearly independent columns (rows) of the matrix 

E  can be chosen. 
Step 2. Compute the nonsingular matrix 

(A.2) rrVEW  . 

Step 3. The desired Drazin inverse matrix is given by  

(A.3) WVEWVE D ][ . 

Proof. It will be shown that the matrix (A.3) satisfies the 
three conditions (7) of Definition 2. Taking into account that 

0det WN  and (A.1) we obtain 
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(A.4) 1111 ][][][][   WVWVWVWVVEW . 

Using (7a), (A.1) and (A.4) we obtain 

(A.5a) 
WWVV

WWVWVVWVWVEWVWVEE D

1

111

][

][][][







         

and 

(A.5b) 
WWVVWVWWVWVV

WVWVEWVEE D

111

1

][][][

][







.  

Therefore, the condition (5a) is satisfied. To check the 
condition (5b) we compute 

(A.6) 

.][

][][

][][

1

11

11

D

DD

EWVEWV

WVEWWVWVWVWVV

WVEWWVWVVEWVEEE













            

Therefore, the condition (7b) is also satisfied. Using (5c), 
(A.1), (A.3) and (A.4) we obtain 

(A.7) 

qqqqqq

qq

qqD

EVWWVVWVWVV

WWVVWVWVV

VWWVEWVEE













)(][

][][

)(][

111

111

111

 

where q is the index of E . 
Therefore, the condition (5c) is also satisfied. 
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