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Resonance in series fractional order RLβCα circuit 
 
 

Abstract. The paper describes the results of studies on the phase and magnitude resonance phenomenon in a series RLC circuit with fractional 
order reactive elements. Formulas for frequency characteristics and resonance conditions have been derived. Simulations of concerned fractional 
order system have been conducted too. 
 
Streszczenie. W artykule opisano wyniki badań zjawiska rezonansu w szeregowym obwodzie RLC z elementami reaktancyjnymi Lβ, Cα ułamkowego 
rzędu. Wyprowadzono zależności określające charakterystyki częstotliwościowe układu oraz warunki rezonansu fazy i amplitudy. Podano także 
wyniki badań symulacyjnych rozpatrywanego układu. (Rezonans fazy i amplitudy w szeregowym obwodzie RLβCα ułamkowego rzędu). 
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Introduction 

Fractional order elements Lβ, Cα represent a 
generalization of classic reactive elements LC [2]. Their 
mathematical models in frequency domain are frequently 
described by relations [1], [2]:  

 

(1)      LjRjZ LL
  ,  

 R , 

(2)      1 CjRjZ CC
 ,  

 R .  
 

where: RL, RC– internal series resistances, L, C – nominal 
inductance and capacitance, α, β – fractional order 
coefficients. 
 

Many practical realizations of these elements are known 
[2], and supercapacitors are one of the best known 
implementation of the fractional order elements. Fractional 
order elements find various applications in electrical 
engineering, electronics and control theory [2], [3]. 
Properties of systems containing fractional order elements 
differ from those of systems with classic RLC elements. For 
instance, basic elements Lβ, Cα have identical properties as 
LTI two - terminal circuits class ± RLC, dependent on α and 
β coefficient values. Relations (1) and (2) can be written as: 
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Mentioned features of their impedance arise from the 
analysis of relations (3) and (4). It is illustrated in Fig. 1. 

 
Fig. 1. The evolution of elements LβCα features in dependence of 
parameters β, α values: 

a. Element Lβ (formula (1)), 
b. Element Cα (formula (2)). 

 
Research on fractional order systems is conducted in 

various directions [2], [4], [5]. One of them concerns the 
analysis of fractional order system features in frequency 

domain [2], [6]. Studies of the resonance phenomena in a 
series RLCα circuit were presented in articles [6], [7]. This 
article is its continuation and concerns the analysis of phase 
and magnitude resonance in a series RLβCα circuit. 
 
Frequency model of the system 

The considered RLβCα model is shown in Fig. 2. It 
consists of a fractional coil (inductor) Lβ and a fractional 
capacitor Cα (e.g. supercapacitor), which impedances are 
described by relations (1) and (2) respectively.  

 

 
Fig.2. Series RLβCα circuit 
 

The impedance of the circuit (Fig. 2) seen from the 
terminals 1 -1’ is represented by: 
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where: 
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Exemplary graphs of the functions |Z(jω)|, φ(ω), 
Re{Z(jω)}, Im{Z(jω)} defined by formulas (5), (7), (8) are 
shown in Fig. 3. 

 

 

 

 
Fig. 3. Graphs of the functions for RLβCα system in dependence of 
parameters β, α values: 

a. Re{Z(jω)}, 
b. Im{Z(jω)}, 
c. Impedance module |Z(jω)| 
d. Impedance phase φ(ω). 

 
Simulations have been performed for elements values: 

R = 10 Ω, L = 1 H and C = 0.1 F. 
 
Phase resonance conditions 

The formula (5) suggests, that the phase resonance 
conditions: 

(9)  Im{Z(jω)} = 0, Im{Y(jω)} = 0,  
 
are the same. Hence, based on the formulas (5) and (9) 
there can be derived a relationship for the phase resonance 
angular frequency ωrp in the system from Fig.2: 
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Formula (10) analysis shows that the resonance state 
does not exist for all α, β values of elements from the 
system from Fig. 2, comparing with Fig. 4. 

 
Fig.4. Conditions of phase resonance existence. 
 

It can be notices, that in specific cases: 
1. α = β: 
 

(11)   2
1

LCrp  , 

 

2. α = β = 1: 
 

(12)  
LC

rp

1
 . 

 
The case defined by formula (12) describes the classic 

resonance in a series RLC circuit. An exemplary 
resonance curve of voltages in the system from Fig. 2 with 
voltage source defined as: 

 

(13)     tutu sin2 0 , 
 

is shown in Fig. 5: 

 
Fig.5. The resonance curve for the circuit from Fig. 2 for 
parameters: α = 0.75 , β = 0.95, R = 10 Ω . 
 

In resonance state the circuit equivalent impedance 
Zr(jω) is defined by a formula: 
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which implies, that the total impedance can take either 
positive or negative values. 

It is also easy to demonstrate that for a parallel LβCα 
circuit (for R = 0, compare with formula (5)) the resonance 
angular frequency ω’rp is defined by relation (compare with 
(10)): 
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The resonance frequencies of series and parallel LβCα 

circuits differ from each other, in contrast to classic integer 
order LC circuits.  

 
Magnitude resonance conditions 

The RMS current value flowing in series RLβCα circuit, 
supplied by sinusoidal voltage source described by the 
formula (13) can be written as: 

 

(16)     


jZ

U
jI 0 . 

 
For a circuit supplied by current source of RMS value 

|I0|, the voltage across the system terminals 1 - 1’ from 
Fig. 2 is described by relation: 
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where: |Y(jω)| - admittance of a series RLβCα circuit. 

Exemplary graphs of impedance and admittance module 
of the circuit from Fig. 2 are shown below. Simulations were 
performed for parameters values: R = 10 Ω, L = 1 H, 
C = 0.1 F, α = 0.75 and β = 0.95. 
 

 
Fig.6. Graph of the function |Z(jω)| (based on the formula (7)), for 
|U0| = 1. 
 

 
Fig.7. Graph of the function |Y(jω)| = 1/ |Z(jω)|, for |I0| = 1. 

 
Fig.8. Graph of the function |I(jω)| and its 1st derivative for |U0| = 1. 

 
Fig.9. Graph of the function |U(jω)| and its 1st derivative for |I0| = 1. 
 

The magnitude resonance condition for the circuit 
supplied by a voltage source |U0|: 
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as well as for the circuit supplied by a current source |I0|: 
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implies the following equation: 
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It can be proved that the magnitude resonance 

conditions for current and voltage are the same and they 
occur at the same frequency for a given series RLβCα 

circuit. 
In a particular case, for R = 0, the magnitude 

resonance angular frequency ωrm of the RLβCα circuit with 
voltage and current supplying is given by the equation 
(compare with formulas (10) and (15)): 
 

(21)      


   cos
2

1

LCrm
 

       

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In specific cases, the magnitude resonance angular 

frequency is (see also formulas (11) and (12)): 
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3. α = β: 
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4. α = β = 1: 
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In cases described by formulas (22) and (23) the 
phase and magnitude resonance occur simultaneously at 
the same frequency. 

Determination of the parameters α and β values for 
which the magnitude resonance exists is not simple, as in 
the case of phase resonance (see Fig. 4). Fig. 11 shows 
the magnitude resonance existence conditions for 
parameters α and β evolution.  

 
Fig.11. Conditions of magnitude resonance existence. 
 

An exemplary dependence of the magnitude 
resonance angular frequency as a function of coefficients 
α and β evolution is shown in Fig. 10. 

 

 
Fig.10. The magnitude resonance frequency for fractional order 
coefficients α and β evolution for parameters: L = 1H, C = 0.1 F. 
 

Generally, for R ≠ 0, equation (20) can be determined 
only numerically. Exemplary characteristics of the 
magnitude resonance angular frequency ωrm as a function 
of coefficient α, determined by simulations, are presented 
in Fig. 12.  

Fig. 12 shows, that the coefficient β has an impact on 
the shape of the resonance angular frequency ωrm curve. 
For small values of β there is no explicit maximum of 
magnitude resonance angular frequency ωrm. As β grows 
up to 0.5, a clear maximum of ωrm appears and ωrm  takes 
higher values. For increasing parameter β maximum of ωrm 
shifts toward lower values of α and its value decreases 
significantly. The value of β for which ωrm reaches the local 
maximum (in range (0,1)) should be calculated by 
adopting the equation (20) as a function of single variable 
β and counting its first and second derivatives with respect 
to β. 

 
Fig.12. The magnitude resonance frequency in fractional order 
coefficient α evolution for parameters: R = 10 Ω, L = 1H, C = 0.1 F 
and chosen values of coefficient β 
 
Conclusions 

The paper presents an analysis of the phase and 
magnitude resonance effect in a series RLβCα circuit, 
including fractional reactive elements: inductance and 
capacitance and their internal series resistances. Relations 
for the equivalent impedance as well as resonance 
frequencies have been derived. It depends on four 
parameters: the inductance L, the capacitance C and 
fractional parameters α and β. Analysis of the formula 
describing the resonance frequencies shows that it exists 
only for specific values of the coefficients α and β. Further 
analysis showed that the phase resonance frequencies of 
series and parallel RLβCα are not identical. Magnitude 
resonance frequencies for the magnitude resonance of 
current and voltage are the same. In specific cases, the 
magnitude and phase resonance frequencies are identical 
too. For α and β       1 formulas reduce to those of a classic 
series resonance RLC circuit.  
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