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Modelling of Linear Analogue Transducers in Frequency Domain 
 
 
Abstract. The paper presents the method for modelling of linear analogue transducers based on the simultaneous measurement of the 
amplitude and the phase characteristics in LabVIEW program. The solutions presented are based on the transfer function 
reparameterisation, which is the basis for the implementation of the weighted least squares procedure [1-3]. The effectiveness of the 
presented method is verified using an example of the acceleration sensor PCB 338b35 modelling.  
 

Streszczenie. Artykuł przedstawia metodę modelowania liniowych analogowych przetworników w oparciu o równoczesny pomiar 
charakterystyk amplitudowej i fazowej w programie LabVIEW. Przedstawione rozwiązania oparte są na reparametryzacji funkcji przejścia, 
stanowiącej podstawę do implementacji ważonej metody najmniejszych kwadratów. Efektywność przedstawionej metody została 
zweryfikowana na przykładzie modelowania czujnika przyspieszenia PCB 338b35. Modelowania liniowych analogowych 
przetworników w oparciu o równoczesny pomiar charakterystyk amplitudowej i fazowej w programie LabVIEW 
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Introduction  
     In measurement practice, the modelling of the transfer 
function of the measuring transducers, usually defined as 
an identification process, is most often carried out based on 
the measurement of the amplitude-frequency characteristic 
[4-6]. However, the best mapping accuracy of a transducer 
can be obtained only based on the simultaneous 
measurement of both the amplitude and phase frequency 
characteristics. Such an approach to the modelling, requires 
the implementation of appropriate numerical algorithms, 
enabling accurate estimation of the parameters as well as 
the determination of their uncertainty. 
This paper presents an application of the weighted least 
squares procedure to the modelling of the wide class of the 
measuring transducers on the basis of the measurement of 
both frequency characteristics. This procedure is based on 
the reparameterisation of the transfer functions for the most 
applied the measuring transducers and is examined in 
detail in this paper. The procedure for estimation of the 
uncertainties of the model parameters by means of the 
Monte Carlo method and by application of 2  test also is 
presented.  
As an example of the application of the presented methods 
the modelling of the acceleration sensor PCB 338b35  is 
examined in the last section of the paper. The results of the 
calculation have been obtained by using the MathCad 
program. 
 
Application of the weighted least squares procedure 

Let us consider a typical transfer function of k-th order 
as follows 
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which can also be written as 
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where ,1,,1,0  Nn  N  denotes the number of 

measurement points.  
The procedure for determining the parameters of model (1) 
and their uncertainties, based on measurement of the 
amplitude )( nA  and the phase )n(Φ  characteristics, is 

carried out in the following stages:  
1.  Determination of the vector  
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based on Eq. (2). 
 

2. Determination of the vector  

(7)  VCΞΞCΞλ 111  TT )(ˆ  

or 

(8)    )}()(min{argˆ T ΞζVCΞζVλ  1  

where 

(9)  VΞΞΞζ TT )( 1  



PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 90 NR 6/2014                                                                                        203 

and C  is the symmetrical and positive definite covariance 
matrix of the vector .V  This matrix is determined by 
applying the Monte Carlo method [7] as follows: 
- calculation of expected values of the characteristics 
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and their standard deviations 
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- choice of the pseudo-random generator, which draw the 
number from the range ).(MC 64 1010    

- determination of the matrices 

(12)   )],([)( AAENrandomnA ε      

)],([)(  ENrandomnε  

(13)  
100

)n(A)n(
)n()m,n(A

ε
ρ




A
A       

100

)n()n(
)n()m,n(




ε
ρ  

where MC...,,,m 21  and ),E(N   is the Gaussian normal 

distribution of the measurement points.  
- calculation of the matrix (14) 
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The covariance matrix is determined based on matrix Ψ - 
Eq. (14). 

3. Calculation of the parameters of model (1) based on Eq. 
(7) or Eq. (8) 
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4. Estimation of the uncertainties of the model parameters 
by means of the Monte Carlo method: 

- calculation of the vector  
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where m  is a multivariate normal distribution [1] with 

covariance matrix uC  calculated by 
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k
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The total uncertainties ka
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.m  

5. Validation of the obtained model. In the case of the 
weighted least squares method application, the  - th 

quantile 2  test is most commonly used with  

(18) kNv  2   

degrees of freedom and   equals 0.05.  

The number of measuring points N is selected so as to 
satisfy the condition (18). 
For determining the model validity obtained by Eqs. (5)-
(17), it is proposed to check the criterion [1, 8] 
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which requires an even distribution of measuring points on 
the frequency axis. 

If condition (19) is not met, it is recommended to increase 
the number of measurement points.  
 
Reparameterisation of measuring transducers transfer 
function 

Based on Eqs. (20)–(35), the exemplary 
reparameterisation of the first and second order 
mathematical models is presented below, which are given 
in the form of the transfer function.  
For the first order model 
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where a  is the amplification coefficient and   is the time 
constant, we have 
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Estimated parameters of the model (19), based on Eq. (20) 
equal 
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For the low-pass second order model, e.g., accelerometers 
with seismic mass 
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where 0  is the undamped natural frequency   is the 

damping factor. 
Estimated parameters of Eq. (24) equal 
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We have a similar solution for the piezoelectric 
accelerometers model    
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Estimated parameters equal 
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For the exemplary high-pass second order model, e.g. 
vibrometer 
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Modelling of acceleration transducer PCB 338b35 
 An application of the algorithm discussed in the first of 
two sections to the modelling of the accelerometer with the 
voltage output is presented below. The transfer function of 
this accelerometer was modelled by means of Eq. (23). 
The frequency characteristics were determined by means of 
the computer aided measuring system presented in Fig. 1. 
This system includes: modelling and reference 
accelerometer, vibration exciter, computer equipped with 
the NI PCI 5112 DAQ card and the LabVIEW program as 
well as power, measuring and charge amplifiers. 
 

 

Fig. 1. Measuring system for frequency characteristics determination. 
 

The modeled accelerometer is the type of PCB 338b35 

with the sensitivity equals 10.2 ).mV/(ms 2  The frequency 

ranges for this accelerometer equal 1Hz-2kHz and 0.7Hz-
3kHz for the sensitivity deviation equals 5% and 10% 
respectively. 

The Brüel&Kjær 8305 accelerometer with a frequency 
ranges of 0.2Hz to 3.1kHz and 0.2Hz to 4.4kHz for the 
sensitivity deviation equals 1% and 2% respectively was 
applied as a reference. This is a charge output type 

accelerometer with the sensitivity equals 0.12 ).2pC/(m/s  

The both accelerometers which outputs mV  and rV  are 

connected to the measuring and charge amplifiers were 
excited by means of Brüel&Kjær vibration exciter type 4809 
driven by Brüel&Kjær power amplifier type 2706 with the 
sinusoidal input signal .oV  This signal is the output of the 

DAQ card. The vibration exciter with a frequency range of 
10Hz to 20kHz was a sinusoidal excitated with an 

acceleration amplitude  of approximately 10 .ms-2  This 

choice of acceleration amplitude enabled the performance 
of frequency characteristics measurements in the range of 
20Hz to 20kHz for assumed 34 different frequencies by 
means of the DAQ card and the LabVIEW program. 
Outputs acceleration signals mV  and rV  were sampled with 

a rate of  2.5 105 samples/s.  
Fig. 2 presents the block diagram of the program for 
simultaneous acquisition of both frequency characteristics. 
The input parameters for the sinus function generator are: 
amplitude, frequency  and sampling rate. 

It was assumed that for the Monte Carlo method, the value 

of MC equals 105. The parameters of accelerometer (23) 

and their uncertainties were determined based on Eqs. 

(15)-(16).  
Based on the measuring points of both frequency 
characteristics the following values of (10) and (11) were 
obtained ..,.,.E,.E AA 550090520980     
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Fig. 2. Diagram of measuring  system intended for determination of  both frequency characteristics 

 

Fig. 3 presents the diagram of measuring system intended for determination of  both frequency characteristics in LabVIEW. 
 

 
Fig. 3. Diagram of measuring  system intended for determination of  both frequency characteristics. 

 
The values of the estimated parameters of model (23) with 
associated uncertainties are listed in Table 1.  
 

Table 1. Estimated parameters of model (1.25) and their 
uncertainties. 

ea ]V/V[  888.3 e  

ef0 [Hz] 493.1 e  

e  0.7 

ea ]V/V[  61.1 e  

ef0 [Hz] 24.68 

e  325.1 e  

 

The validity of the obtained model was checked by the 

application of the 2  test with 65 degrees of freedom and 

with 050. , as according to (18).  
Taking into account that the value of 

    ΞζΨCΞζΨ  1min T =52.08, as well as the resulting 

from chi-square distribution: 60.442
975.0,65

  and 

,18.892
025.0,65

  it means that this model passes the 

validity test. For 36 and 54 measuring points, the 2  test 

was failed. 
Fig 3. presents frequency characteristics determined in 

the MathCad program according to the parameters listed in 
Table 1, where A  and   denote vectors of both 
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characteristics measuring points as well as )( fK  was  

determined based on (2). The obtained values of (2) 

parameters equal ,.9700   ,e. 54931   

.e. 95722   
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Fig. 4 Determined frequency characteristics in MathCad program. 
 
Conclusion 

The possibility of the application of the methods 
presented in this paper is limited to the models, the 
numerator of which is monomial. Otherwise, it is necessary 
to reduce the order of the numerator, e.g. by applying the 
optimisation methods presented in [9-10]. In the case of 
multi-inertial models, it is possible to make their 
transformation to the model described by Eq. (1) applying 
methods presented in [11].  
The result of the class of transducer model adopted 
erroneously or mismatched number of measurement points 
is failure the condition (19). These incorrect assumptions 
are equivalent to the need of the results rejection and 
repetition the modelling process. Such an approach is a 
fundamental advantage of linear analog transducers 
modelling presented in the paper over the commonly used 
alternative methods. 

In the case of noise effect, it is convenient to apply of 
methods presented in [12] for measuring the characteristics 
of y(x) defined by parametric variables x(t), y(t) or 
algorithms discussed in [13], which enable nonparametric or 
parametric frequency domain identification in the presence 
of nonlinear distortions under some general conditions for 
random multisine excitations. 
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