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Abstract. In this publication colloid with superparamagnetic nanoparticles is considered. Also Brown and Néel relaxation processes were taken into 
account. With assumption that effective value of the field in particle is equal to the exciting field, formulae for power losses in ferrofluid is derived. 
At the end discussion of the influence of the different particle parameters on the generated power is given. 
 
Streszczenie. W artykule tym przedstawiono sposób obliczania mocy wytwarzanej przez koloid zawierający superparamagnetyczne 
nanocząsteczki. Zjawisko relaksacji Browna i Néele'a zostało uwzględnione przy wyprowadzaniu wzorów na moc. Na koniec przedyskutowano 
wpływ różnych parametrów cząsteczki na wytworzoną moc. (Symulacja pola elektromagnetycznego i rozkładu temperatury w tkance ludzkiej 
w czasie RF hipertermii) 
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Introduction 
 The ability of magnetic nanoparticles to performance as 
effective heating sources for magnetic hyperthermia has 
been showed many years ago [1]. However, the 
mechanisms and limits for supplying the generated energy 
to intracellular spaces are still questions to discuss [2]. The 
therapeutic application of magnetic hyperthermia consist in 
externally increasing the temperature of a tissue with a 
tumour through alternating magnetic fields acting on 
magnetic nanoparticles previously inserted in that tissue. 
The safety of magnetic hyperthermia in comparison with 
microwave or eddy current based hyperthermia is 
associated with the frequency region (f < 1MHz) of the 
electromagnetic radiation used by this type of hyperthermia, 
where the heating effects on living healthy tissues are 
negligible. The mechanism of the energy dissipation when a 
magnetic colloid is located in an AC magnetic field has 
been extensively studied for different particle radiuses, 
colloid viscosity, volume fraction of particles in suspension 
and magnetic field strengths.  
 Most of the experimental and theoretical studies 
consider single-domain particles, and thus the discussion of 
heat generation method is concerned to Brownian and Néel 
relaxation mechanisms. The prevailing picture today is that 
power absorption takes place mainly through Néel 
relaxation process of the magnetic moments, since energy 
losses from mechanical rotation of the particles, acting 
against viscous forces of the liquid medium (Brownian 
losses) cannot contribute at those frequency ranges used 
magnetic hyperthermia [5]. 
 Different heating methods are used to heat the 
superficial and deep placed tumors. Resistive heating with 
external electrodes, microwaves or ultrasound are usually 
used. Such techniques, however, may cause problems in 
heating deeply situated tumors, due to unavoidable over-
heating adjacent healthy tissues. In recent years interest in 
improving hyperthermia techniques has gained substantial 
attention in searching for new methods that can result in 
depth and uniform tissue heating. Invasive methods include 
heating with deep implanted electrodes, invasive microwave 
antennas, thermal seed heating, etc [10]. 
 A main advantage of electromagnetic hyperthermia is its 
ability to control the destruction process by a single electro-
magnetic applicator. In ideal case, concentrating power on 
a tumor selectively, heats it to temperatures high enough to 
destroy cancerous cells without overheating and damaging 
the surrounding healthy tissues. 

 To apply the induction heating ability for magnetic 
hyperthermia, the magnetic fluids are usually crated as 
finite-size particles, and subjected to an AC magnetic field 
with the intensity Hex < 16 kA/m and frequency f < 1 MHz, 
which are typically used in clinical hyperthermia treatments. 
However, the influence of field distribution in nanoparticles 
on the heating performances of magnetic fluids is rarely 
discussed in related studies [7].  
 The amount of magnetic particles required to generate 
the needed temperatures depends to a large degree on the 
method of administration. Direct injection permits for 
considerably greater quantities of magnetic material to be 
placed in a tumour than in methods using intravascular 
administration or antibody targeting, although the latter two 
may have other advantages. A realistic supposition is that 
circa 5 – 10 mg of magnetic material placed in each cm3 of 
the tumor tissue is adequate for magnetic hyperthermia in 
human patients [8]. 
 In this article influence of human tissue parameters on 
electromagnetic field, generated power losses and 
temperature distribution is considered. In order to calculate 
a full investigation of the temperature variation in human 
tissues, one needs to take into account the tissue 
composition, the blood perfusion rate, the heat conduction 
effects of various tissues, and the heat generation due to 
the metabolic processes. Also influence of nanoparticle 
parameters on temperature distribution is examined. 
 
Magnetisation of particle 
 Over the last years the hyperthermia has been based on 
magnetic colloids, where the magnetic material consists of 
superparamagnetic nanoparticles suspended in water or a 
hydrocarbon fluid to create a magnetic fluid known also as 
ferrofluid. When a superparamagnetic particle is removed 
from a magnetic field its magnetization vector relaxes back 
to zero because of the external thermal energy of the fluid 
suspension. This relaxation is due either to the physical 
rotation of the particles themselves within the fluid, or 
rotation of magnetic moments within each particle. Rotation 
of the whole particles in colloidal suspension is known as 
Brownian rotation while rotation of the moment within each 
particle, while particle itself is motionless, is referred as 
Néel relaxation. Each of these processes is described by a 
relaxation time: τB for the Brownian motion, which depends 
on the hydrodynamic properties of the fluid; while τN for the 
Néel process, which is influenced by the magnetic 
anisotropy energy of the superparamagnetic particles 
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relative to the thermal energy. Both Brownian and Néel 
relaxation movements may appear in a ferrofluid, whereas 
only τN is significant where no physical rotation of the 
particle takes place. The relaxation times τB and τN depend 
in different way from particle size. Losses of energy caused 
by Brownian rotation have maximum value at a lower 
frequency than are those due to Néel relaxation for a given 
particle size [1].  
 For small exciting magnetic field amplitudes, and 
assuming lack of interactions between the super-
paramagnetic particles, which occur in colloidal suspension, 
the properties of the ferrofluid to an exciting AC field can be 
described in terms of its complex susceptibility χ = χ′ – jχ′′, 
where both χ′ and χ′′ are frequency dependent. The out-of-
phase χ′′ part of susceptibility component is a source of the 
heat generation given by 

(1) 2
0 0πμ P H   

where μ0 − the permeability of free space, H0 − is the 
magnetic field intensity in the material, f − the field 
frequency. This relation can be explained physically that if 
M lags H we have a positive conversion of magnetic energy 
supplied with a magnetic field into internal thermal energy.  
 For a particle in magnetic fluid staying at rest in a low-
frequency field, magnetic relaxation process yields the main 
energy loss. In magnetic relaxation magnetization vector 
fulfils following differential equation [4]: 

(2) 
     1dM t

M t M t
dt        

where M is the magnetization intensity, τ is the relaxation 
time. When AC excitation field in complex domain has the 
value H(t) = H0e

jωt, then the magnetization in equilibrium 
state is equal M∞(t) = χ0H0e

jωt, where χ0 is susceptibility at 
rest. Introducing this value into above equation gives 

(3)   j t0 0 e
1 j







H
M t   

Because from definition we have, that 

(4)    ˆM t H t   

where ̂  is complex susceptibility and is given by 

(5) 0ˆ j =
1 j

  


  


  

where the components of susceptibility have the values 

(6) 
 
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1
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(7) 
 

0
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Introducing (7) into (1) gives power losses dissipated in 
magnetic dissipation process  

(8) 
 

2 2 2
0 0 0 22 μ

1 2




 
 

P H f
f

  

and its dimension is W/m3. In magnetic particle, which has a 
finite size and is placed in constant magnetic field Hex, 
demagnetizing field Hd is induced by oriented magnetic 
dipoles. Total filed in particle has lower value 

(9) tot ex dH H H    

(10) m totM H   

where χm is the magnetic susceptibility of the particle. It can 
be shown [4] that demagnetizing strength vector is given by 

(11) d   M N M   

where N  is a demagnetizing factor in tensor form and is 
given by 

(12) 
3

1

4

  
 

i i
ij j

S

x x
N n dS

r
  

where nj are components of unit normal vector to the 
surface S. When the major axes of the particle coincide with 
coordinate axes, then for i ≠ j, Mij = 0, and the 
demagnetizing tensor reduces to 

(13)  d 1 11 1 2 22 2 3 33 3N M N M N M   H a a a   

where ai are unit versors and where 

(14) 11 22 33 1N N N     

There demagnetizing factors depend only from geometrical 
shapes of the particles and not from material properties.  
 When particle has a cylinder shape with radius R0, and 
length h, and is placed in uniform magnetic field Hex along 
the longitudinal axis of the particle then the magnetization is 
quasi-uniform along this axis. When coordinate axes coin-
cide with cylinder axes, the transversal magnetizations are 

(15) 1 2 0M M    

and the induced demagnetizing field is uniform along the 
longitudinal axis and is given by 

(16) d 33 3H N M    

The demagnetizing factor along the longitudinal axis N33 can 
be computed from (12) and has a value [4] 

(17) 
 

3 3
33 3 3 22

0

1
1

4 2S

x x h
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r h R
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Because of the symmetry, the transversal demagnetizing 
factors are also given by 

(18) 
 

33
11 22 22

0

1

2 2 2

N h
N N

h R


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
  

From (9), (10), and (16), for the assumption of uniform 
magnetization, we have 

(19) m
d ex

m1

N
H H

N







  

(20) tot ex
m

1

1
H H

N



  

where N is the demagnetizing factor for given particle.  
 When the particle is placed in homogeneous magnetic 
external AC field Hexe

jωt, then  

(21) m j       
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Introduction (21) into (19) and (20) yields [4]: 

(22) 
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Relaxation losses 
 Introducing (22) into (1) gives for the AC magnetization 
losses with demagnetizing field effects taking into account 

(24) 
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Taking into account (5) and (6) yields 
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 The heating power generated by magnetic fluids is 
primarily from the Brownian and Néel relaxation processes 
of superparamagnetic particles. In Brownian relaxation 
process, the magnetic moment vector of particle is attached 
to the domain and rotates with external field. When placed 
in an alternating magnetic field, the particle moment rotates 
together with particle. In Néel relaxation, the magnetic 
moment rotates within the magnetic domain with the applied 
magnetic field while crystal structure is fixed. The Brownian 
relaxation time is given by 

(26) h
B

B

3 V

k T

    

and for the Néel process the time relaxation constant has 
the value 

(27) u m
N 0

B

exp
K V

k T
 

 
  

 
  

where η is the viscosity coefficient of the carrier liquid, Vh is 
the hydrodynamic volume of the particle and Ku the 
anisotropy constant of the particles. A value of τ0 = 10-9 s is 
mostly used [5]. When in colloid containing superpara-
magnetic particles, Brownian and Néel processes occur 
simultaneously, the effective relaxation time τ is given by [2] 

(28) 
B N

1 1 1

  
    

For spherical particles we have 

(29) 3
m

4

3
V R   

(30)  3

h

4

3
  V R   

where R is the radius of magnetic particle and δ is the 
coating layer thickness surrounding that particle. 

Substituting (26) and (27) into (28) and taking into account 
(29) and (30) we get 

(31) 
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 The typical values and ranges of the material 
parameters of a magnetite ferrofluid are as follows: field 
intensity Hex < 16 kA/m, with the typical value 8 kA/m, the 
typical field frequency f < 1MHz with typical value 100 kHz. 
The typical temperature is equal T = 300 K. 
 Assuming that effective field strength Heff in particle is 
equal to the external field Hex then the approximate value of 
the power losses is given by [4] 

(32)  
2 2 2

a ex ex2 2 2
ex

4 1
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1 4
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where 
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The value of Md = ψMs, where Ms is the saturation 
magnetization of the particle system ψ is the solid volume 
fraction of the particles in the whole colloid. 
 
Simulation results 
 In this section dependence of power losses Pa from 
particle radius is examined. Following values of the particle 
and suspension are assumed: μ0=4π·10-7 H/m, τ0=1e-9 s; 
kB = 1.38e-23 J/K, ψ = 0.01, T = 300 K; Md = 446000 A/m, 
Ku = 32000 J/m3; η = 1e-3 Pa·s; δ = 2e-9 nm, f =100 kHz, 
Hex = 8 kA/m, N = 0.004, Qnano = Pa·V, where V is volume of 
nanoparticles. 
 Dependence of power Pa from particle radius R is given 
in Fig.1. We can see that highest value of the generated 
power for given frequency changes with frequency of the 
excitation. The maximum is shifted in direction of lower 
frequency values. 
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Fig.1. Dependence of the induction heating power on magnetic 
core size for different particle radius values 
 
Fig.2 shows dependence of Pa from viscosity η of the colloid 
with nanoparticles. For greater viscosity values the power 
losses diminishes. In this case particles can not rotate so 
freely as in the case of lower viscosity coefficient. When 
volume fraction of the particles in suspension in-creases the 
generated power also get greater value (Fig.3). The above 
relations were derived with assumption that particles not 
interact each with other. As one can expect, when strength 
of the magnetic field increases the generated power also 
increases (Fig.4). In this way we can control demanding 
energy supply to human tissues in RF hyperthermia. 
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Fig.2. Dependence of the induction heating power from viscosity of 
the colloid. Dimension of the viscosity η is given in Pa·s 
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Fig.3. Dependence of the induction heating power from the solid 
volume fraction of the particles in the whole colloid 
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Fig.4. Dependence of the induction heating power from the external 
magnetic field strength  
 
 Equations describing distribution of the electromagnetic 
field in human body are given by (34) and (35). For detail 
description of the simulation see [8, 9,10]. 

(34)   1 ˆ ˆ ˆj   


           
 

x x xA A J   

(35)   1 ˆ ˆ ˆj   


           
 

y y yA A J   

Complex permittivity is equal  ˆ j      , where ε′ = ε0εr 

and ε′′ = σ/ω. Next magnetic field strength from the following 
formula has been calculated 

(36)    r i r i
0 r

1ˆ j j
μ

H a

  

      
y y x x zA A A A

x y
  

Table 1. Physical parameters of tissues [6, 9] 

Tissue r 
 

[S/m] 
k 

[W/(m·K)] 
Qmet 

[W/m3] 
human body 29.6 0.053 0.22 300 
tumor 160 0.64 0.56 480 

 
 
 
 

Table 2. Physical parameters of blood [9] 

Tissue 
ρb 

[kg/m3] 
Cb 

[J/(kg·K)] 
Tb 

[K] 
ωb 

[1/s] 
blood 1020 3640 310.15 0.0004 

 
The expression of Pennes bioheat equation in a human 
body with uniform material properties in steady state 
magnetic field [11] is given by  

(37)   b b b b eddy met nano( )         k T C T T Q Q Q   

After solution of the field equations and taken into account 
power losses given by equation (32) the temperature 
distribution along tumor perimeter is calculated (Fig.5).  
 

 
 

Fig.5. Temperature distribution along the tumor perimeter 
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