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Abstract. Automatic speech recognition systems are used in vehicles. With this application it is possible to control the navigation system, air 
conditioning system, media player, and make phone calls by using voice commands. The effectiveness of speech recognition systems depends 
largely on the acoustic conditions in the cabin of the vehicle. Recognition accuracy determines the ability to extend the functionality of such systems 
beyond the basic functions listed above. The article shows the preliminary results of research on speech recognition and evaluation of speech 
intelligibility in the vehicle cabin. The purpose of this article is to present the influence of the background noise levels in a car cabin on speech 
intelligibility, and to investigate the discriminant analysis as a robust classifier for the speech recognition process. 
 
Streszczenie. Automatyczne systemy rozpoznawania mowy są stosowane w pojazdach. Dzięki tej aplikacji możliwe jest sterowanie systemem 
nawigacji, klimatyzacją, odtwarzaczem multimedialnym i wykonywanie połączeń telefonicznych za pomocą poleceń głosowych. Skuteczność 
systemów rozpoznawania mowy zależy w dużej mierze od warunków akustycznych w kabinie pojazdu. Dokładność rozpoznawania określa zdolność 
do rozszerzenia funkcjonalności takich systemów poza podstawowe funkcje wymienione powyżej. W pracy przedstawiono wstępne wyniki badań 
nad rozpoznawaniem mowy i oceną zrozumiałości mowy w kabinie pojazdu. Celem pracy było przedstawienie wpływu poziomu tła w kabinie 
samochodu na zrozumiałość mowy i zbadanie analizy dyskryminacyjnej jako klasyfikatora w procesie rozpoznawania mowy. (Analiza 
dyskryminacyjna komend głosowych w kabinie pojazdu). 
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Introduction 

Automatic Speech Recognition (ASR) systems applied 
in vehicles allow one to control the navigation system, air 
conditioning system, media player, and make phone calls 
by using voice commands. The effectiveness of ASR 
systems depends largely on the acoustic conditions in the 
cabin of the vehicle, especially on the background noise 
levels for their influence on speech intelligibility. 

The car interior noise level is still problematic and 
impacts the recognition rates. Many solutions have been 
proposed to resolve this problem. The ASR performance 
degrades substantially when a speech is corrupted by the 
background noise not present during training. The reason 
for this is that the observed speech signal no longer 
matches the distributions derived from the training material. 
This mismatch between training and testing conditions is 
one of the most challenging and important problems in ASR 
[1, 2]. Many solutions have been proposed to improve the 
in-car recognition accuracy. The first approach is focused 
on parameterization methods that are fundamentally 
resistant to noise or minimize the effect of the noise. The 
second approach is based on noise reduction by 
transforming a noisy speech into a clean speech - the noise 
is removed or reduced from the representation of the 
speech. The third approach includes methods that are 
based on adoption of clean models to the noisy recognition 
environment in order to contaminate the models. Authors of 
study [3] applied lip detection for audio-visual automatic 
speech recognition (AVASR) in order to overcome the poor 
robustness and effectiveness of voice recognition systems 
in a car environment. Because the implementation of 
AVASR required algorithms to accurately locate and tract 
the drivers face and lip area in real-time, it was shown that 
using the AVICAR in-car database [4] the Viola-Jones 
approach can be used as a suitable method.  

Assessment of speech intelligibility allows to predict 
speech communication in specific conditions. The 
International Standard specifies the requirements for the 
performance of speech communication for verbal alert and 
danger signals, information messages, and speech 
communication in general [5]. One of the parameters 
defining speech intelligibility is SIL (en. speech interference 
level) which offers a method to predict and assess speech 
intelligibility in cases of direct communication.   

Speech intelligibility ratings and speech recognition in a 
cabin of the vehicle were investigated in study [6]. The 
speech intelligibility ratings were consistent with the ASR 
results for Bad and Poor ratings - none/one/two recognized 
commands. For Good ratings of speech intelligibility, the 
ASR results were opposite to good results and were rather 
fair – the recognition results less than 50 % - one or two 
recognized commands on four expressed commands. For 
Fair intelligibility rating, the ASR results were none. The 
speech intelligibility ratings were not consistent with the 
ASR results for Good and Fair intelligibility ratings in this 
experiment. The ASR system resulted in low recognition 
rates, especially in the presence of screens [6].    

The aim of this work was to present the influence of the 
background noise levels in a car cabin on speech 
intelligibility and to investigate the discriminant analysis as a 
robust classifier for the speech recognition process in the 
cabin of the vehicle. 

 
Methods 

Measurements of background levels were made with a 
Norsonic (Nor) 140 sound analyzer. Measurements were 
taken in measurement conditions presented in Table 1.  
 
Table 1. Conditions of measurement 

Condition Description 
LABORATORY 

ROOM 
Measurements taken in a laboratory room 

testing conditions. 
NO SCREENS, 

TRAFFIC 
Other traffic noise present (traffic) and no 

noise barriers on both sides of the 
express road (no screens). 

SCREENS, 
TRAFFIC 

Other traffic noise present (traffic) and 
noise barriers on both sides of the 

express road (screens). 
SCREENS, NO 

TRAFFIC 
No other traffic noise present (no traffic) 
and noise barriers on both sides of the 

express road (screens). 
 

Measurements were taken in a hatchback car with three 
doors and in a laboratory room testing conditions. During 
measurements in the car, the Nor 140 sound analyzer was 
situated on the passenger side. The car was moving at 50 
km/h. Car windows were in one of the following positions 
during measurements presented in Table 2.  
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Table 2. Positions of car windows 
Position Description 

LR closed Both windows (L-Left, R-right) closed 
from the driver side and the passenger 

side. 
R open Window from the passenger side (R-

Right) open, window from the driver 
side (L-Left) closed. 

LR open Both windows (L-Left, R-Right) open 
from the drier side and the passenger 

side. 
L open Window from the passenger side (R-

Right) closed, window from the driver 
side (L-Left) open. 

 
Recordings were collected in the following variants 

presented in Table 3. 
 

Table 3. Variants of measurement (in-car conditions) 
Conditions Car-window positions 

NO SCREENS, 
TRAFFIC 

LR closed, R open, LR open, L open 

SCREENS, 
TRAFFIC 

LR closed, R open, LR open, L open 

SCREENS, NO 
TRAFFIC 

LR closed, R open, LR open, L open 

 
As presented in Table 3, in three different conditions, 

four options of measurement were taken with different 
positions of car windows.  

Speech recordings were collected with OLYMPUS LS-
11 digital recorder in the same variants explained above, 
after the measurements taken with Nor 140 sound analyzer. 
The recordings consisted of four speech commands: stop, 
close, open, play. Speech commands were recorded with 
44 kHz sampling rate and 16-bit signal resolution.  

Speech Interference Level (SIL) parameter was used in 
this work to predict and assess the speech intelligibility in 
cases of direct communication [5]. The listener here is the 
ASR system that is listening to the voice commands of the 
speaker – the driver. The speech interference level (LSIL) 
was calculated as the arithmetic mean of the sound-
pressure levels in four octave bands with central 
frequencies 500 Hz, 1 kHz, 2 kHz, 4 kHz. The speech level 
(LS,A,L) was calculated according to vocal effort normal/ 
raised: 60 dB / 66 dB and distance to listener: 1 m / 2 m [5]. 
The SIL is given by the difference between  LS,A,L and LSIL. 

Discriminant analysis of speech commands recorded 
with OLYMPUS LS-11 in each measurement variant was 
based on Mel-frequency cepstral coefficients (MFCC). 
Discriminant analysis was performed in STATISTICA 
Software [7]. Discriminant analysis included discrimination 
stage and classification stage [8]. In this study, discriminant 
analysis was based on 12 MFCC features as independent 
variables and speech commands as grouping variable. After 
determining variables that discriminate speech commands 
occurring groups, the classification stage was applied into 
analysis. Due to four speech command groups (stop, close, 
open, play), four classification functions were created 
according to the following formula: 
 
(1) 121222110)( mfccwmfccwmfccwcvK iiiii    

 
where: the v - command group /stop, close, open, play/, the 
subscript i denotes the respective group; 0ic  is a constant 

for the i'th group, wij is the weight for the j'th variable in the 
computation of the classification score for the i'th group; 
mfccj is the observed mel-cepstral value for the respective 
case. 
 

Results 
Table 4 shows the A-weighted sound level and the SIL 

calculated for each measurement variant [6].  
 

Table 4.  A-weighted sound level and the SIL for every 
measurement variant LS,A,L=60 dB [6] 

Variant 

A-
weighted 

sound 
level 

[dB(A)] 

LSIL 
[dB] 

SIL 
[dB] 

Intelligibility 
rating 

LABORATORY ROOM TESTING CONDITIONS 

L0 26.7 14.9 45.2 Excellent 

NO SCREENS, TRAFFIC 

LR closed 64.3 44.1 15.9 Good 

R open 68.6 53.2 6.8 Poor 

LR open 72.1 58 2.0 Bad 

L open 72.3 58.2 1.8 Bad 

SCREENS, TRAFFIC 

LR closed 64.9 43.7 16.3 Good 

R open 69.1 54.6 5.5 Poor 

LR open 73.4 59.1 0.9 Bad 

L open 67.4 50.3 9.7 Poor 

SCREENS, NO TRAFFIC 

LR closed 63.7 40.9 19.2 Good 

R open 66.3 51.3 8.8 Poor 

LR open 66.5 51.3 8.8 Poor 

L open 65.1 48.2 11.8 Fair 

 
As presented in Table 4, the A-weighted sound level 

measured in the car cabin was between 63.7 dB(A) and 
73.4 dB(A), and changeable. The A-weighted sound level 
was mostly influenced by other traffic. The highest ratings 
were obtained for variants with the presence of other traffic. 
The traffic determined also the speech intelligibility ratings. 
The best intelligibility ratings were obtained for the last 
variant – screens and no traffic. The worst intelligibility 
ratings were obtained for variant with traffic and no screens. 
In general, for both windows closed, the intelligibility rating 
was Good. For R open, the intelligibility rating was Poor. 
For both windows open, the intelligibility rating was Bad, 
except when there was no traffic (Poor). For L open, the 
intelligibility rating was strongly influenced by the presence 
of other traffic, from Bad, Poor, Fair. For laboratory room 
testing conditions, the sound level was equal to 26.7 dB(A). 
The intelligibility rating for such conditions was excellent.  

After investigation of the background levels and speech 
intelligibility ratings in car cabin and in laboratory room 
testing conditions, it was proceeded discriminant function 
analysis for speech recordings. Discriminant analysis of 
speech commands spoken in the laboratory room showed 
significant main effects for 12 MFCC and 100 % of 
classification – every speech command was successfully 
classified to its classification function (see Table 5).  

 
Table 5. Classification results – laboratory room conditions 

Speech 
command 

close open play stop 

close 100 % - - - 
open - 100 % - - 
play - - 100 % - 
stop - - - 100 % 

Mean value: 100 % 
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A dash “-“ in column means that no case has been 
classified to this command group. 

Discriminant analysis performed for speech commands 
spoken in the car cabin showed significant main effects for 
12 MFCC used in the model (Wilks’-Lambda: 0.040, 
approximation, p < 0.0001). Three discriminant functions 
(Root1, Root2, and Root3) based on 12 MFCC entry 
variables were created. Chi-square tests with successive 
roots removed performed in canonical stage are presented 
in Table 6. 
 
Table 6. Chi-Square Tests with Successive Roots Removed – car 
cabin 

Roots 
Removed 

Canonical R Wilks' - Lambda p-value 

0 0.903 0.040 0.000001 
1 0.799 0.217 0.000003 
2 0.633 0.599 0.015079 

 
As presented in Table 6, chi-square tests of canonical stage 
showed significance of all created discriminant functions 
used in the model (R = 0.903, Wilks’-Lambda = 0.040, 
p < 0.000001). Removing of the first discriminant function 
showed high canonical value R between groups and 
discriminant functions (R = 0.799, Wilks’-Lambda = 0.217). 
In general, the more removed functions the less 
discrimination between groups (R = 0.633, Wilks’-
Lambda = 0.599).  

After deriving discriminant functions and determining 
variables, 12 MFCC features that discriminate most 
between speech groups, it was proceeded classification 
stage. The coefficients of classification functions obtained 
for speech commands are presented in Table 7. 

 
Table 7.  The coefficients of classification functions – car cabin 

ic  
)(1 closeK

 

)(2 openK

 

)(3 playK
 

)(4 stopK  

0ic  127.71 130.03 127.77 131.21 

1iw  19.50 26.18 16.57 26.11 

2iw  216.11 185.66 198.60 206.16 

3iw  -79.44 -75.19 -60.00 -83.35 

4iw  234.22 231.20 228.88 242.68 

5iw  73.76 38.32 51.66 60.75 

6iw  300.58 312.61 287.62 329.05 

7iw  155.20 168.28 158.78 152.78 

8iw  538.36 544.54 529.82 559.90 

9iw  -36.84 -64.57 -24.79 -54.13 

10iw  259.12 293.38 245.97 283.32 

11iw  18.88 -23.58 -7.64 -6.26 

12iw  -882.55 -844.69 -828.71 -912.11 

 
Results of classification using classification functions Ki(v) 
for speech command groups are presented in Table 8.  
 
Table 8. Classification results – car cabin 

Speech 
command 

close open play stop 

close 100 % - - - 
open - 92 % 8 % - 
play - - 100 % - 
stop 16 % - - 84 % 

Mean value: 94 % 
 
Mean value (94 %) was calculated as a mean value of the 
best results of classification obtained for each command 

group. The highest score was obtained for /close/ and /play/ 
command groups (100 %). Every case in /close/ and /play/ 
command group was classified in 100 %. The lowest result 
of classification (84 %) was obtained for the /stop/ 
command – the 16 % of cases in /stop/ command group 
were classified as /close/ command. The 8 % of cases in 
/open/ command group were classified as /play/ command.  
 
Conclusions 

Background levels presented in this article were 
dependent on the presence of other traffic – the more 
traffic, the highest sound levels. The A-weighted sound 
levels were between 63.7 dB(A) and 73.4 dB(A), and 
changeable in measurement variant.  

Background levels influenced speech intelligibility 
ratings. Speech intelligibility ratings were accordingly: Good 
for LR closed; Fair, Poor, Bad for L open; Poor for R open; 
Poor, Bad for LR open.  

For such acoustic conditions, discriminant analysis 
applied as classifier to the recognition of voice commands 
in the car cabin resulted in 94 % of classification. For 
laboratory conditions, the classification stage of discriminant 
analysis resulted in 100 % of classification. The efficiency of 
classifier was 6 % less in the car cabin due to higher 
background levels that influenced speech recordings. The 
value of 94 % in the car cabin is a good recognition rate for 
such changeable conditions. The preliminary results 
showed that discriminant analysis can be considered as 
robust classifier for recognition process in the cabin of the 
vehicle, but it requires further study with more advanced 
and extended database of speech commands. 
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