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Plano-parallel models of the electrical systems with non-uniform 
heat exchange on a perimeter  

Part I. Stationary thermal field 
 
 

Abstract. The stationary thermal field in a plano-parallel system was determined in the article with the aid of an analytical method. Three different 
coefficients of the heat transfer were assumed on a perimeter of the system cross-section. The temperature distribution was obtained by 
superposition of the particular integral of Poisson’s equation and a general integral of Laplace’s equation, taking into account Hankel’s boundary 
conditions. The problem considered here can be a mathematical model of the two-dimensional thermal field in a rectangular DC busway or in a long 
dielectric capacitative heated. For this reason the method of determination of the steady state current rating and the maximal electric field strength  
in a dielectric was presented in the paper.  The results of computations were numerically verified and presented in the graphic form.  
 
Streszczenie. Za pomocą metody analitycznej w artykule wyznaczono stacjonarne pole termiczne w płasko-równoległym układzie. Na obwodzie 
jego przekroju założono trzy różne współczynniki przejmowania ciepła. Rozkład temperatury uzyskano superponując całkę szczególną równania 
Poissona i ogólną równania Lapalce’a z uwzględnieniem warunków brzegowych Hankela. Rozpatrywane zagadnienie może stanowić model 
matematyczny dwuwymiarowego pola termicznego w prostokątnym szynoprzewodzie DC lub w długim dielektryku nagrzewanym pojemnościowo. Z 
tego powodu w pracy przedstawiono metodę wyznaczania długotrwałego prądu dopuszczalnego i maksymalnego natężenia pola elektrycznego w 
dielektryku. Wyniki zweryfikowano na drodze numerycznej i przedstawiono w postaci graficznej.(Płasko-równoległe modele  układów 
elektrycznych z nierównomiernym oddawaniem ciepła na obwodzie. Część I. Stacjonarne pole temperatury) 
 
Keywords:, analytical methods of the field theory, stationary thermal field, computer aid, steady state current rating 
Słowa kluczowe: analityczne metody teorii pola, stacjonarne pole termiczne, wspomaganie komputerowe, długotrwały prąd dopuszczalny 
 
Introduction 
 Plano-parallel thermal models are the systems, which 
length is significantly larger than their cross-sectional 
dimensions. Moreover, the field sources and boundary 
conditions should be constant along the length of a model.  
The examples of the mentioned systems are: long sections 
of a DC busway with the rectangular cross-section and 
cubicoidal dielectric charges placed in the electrode heaters 
(e.g. in wood drying and laminates manufacturing). In the 
first case an uniform distribution of the heating power 
density is obvious (lack of the skin effect). In turn 
capacitative heating the analogical effect is observed for a 
zero potential of one of the electrodes of a heating capacitor 
and a small difference of the potentials on the other one 
(10% maximum). In practice it is realized by supplying the 
heating capacitor at many points or by the respective 
connection of an inductance between electrodes [1]. The 
other method of equalization of the electric field in a charge 
is reduction of a frequency of the capacitor supply source. 
 In case of the rectangular DC busway a knowledge of 
the temperature distribution in the steady state is very 
useful for an accurate determination of the steady state 
current rating [2], [3]. In turn in the capacitative heating a 
stationary distribution of the temperature has a great 
importance in the sustained heat generation by a small 
power [4]. Then it is also important to determine the 
warmest point of a charge, what prevents, among others, a 
loss of its desirable properties or even a devastation. Also a 
difference between the maximal and minimal temperature 
(i.e. gradient) is important. 
 The stationary thermal field can be determined by the 
analytical and numerical way, as well. Basic advantage of 
the analytical solution are the results in the form of 
formulas. They enable, among others, discussion on the 
influence of particular parameters and physical 
interpretation of the obtained results, as well. Besides 
formulas enable to test the programs for numerical 
computations. From the above presented reasons the 
authors decided for an analytical solution of the problem. 
 In [5], [6], [7] the thermal field of a plano-parallel model 
was determined in terms of the convectional heat 
exchange. The heat transfer coefficient was assumed 

identical on the whole perimeter of the system. In [5] the 
thermal field of a column of the transformer was analyzed, 
where two different heat transfer coefficients were assumed 
(but the same on opposite surfaces of the system). The 
above mentioned problems were solved in [5], [6], [7] by the 
Roth method (i.e. by eigenfunctions of the Laplace’s 
operator [8]) and by the method of integral transformations 
[9]. In the present paper the separation of variables method 
[10] was applied instead. Such an approach is motivated by 
more simple and more convenient final solution in the form 
of single series (in [5], [6], [7] double series were obtained 
of much worse convergence). The selected method enabled 
to avoid troubles connected with realization of the inverse 
integral transformation [9]. In authors opinion an original 
element of the presented article is consideration on the 
analytical way of three different heat transfer coefficients on 
a perimeter of the system (Fig. 1, HLV). Such a model 
better responds to the real heat exchange than the one with 
a constant value of the coefficient on the whole edge of the 
system [5], [6], [7]. 
 
Boundary problem of the plano-parallel field model 
 The subject of the analysis is a plano-parallel system, 
which cross-section is shown in Fig. 1. It is convenient to 
present the boundary problem with respect to a thermal 
increment  vs(x,y), referred to the ambient temperature To 
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where: Ts(x,y), - stationary temperature field distribution in 
the system.  
Temperature increase (1) with the assumption of a 
homogeneous structure of the model material is described 
by the Poisson equation [11], [12] 
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case of a dielectric charge [1],  - specific thermal 
conductivity,  - specific resistivity, I - DC current intensity,  
(2a,b) – cross-sectional dimensions of the system (Fig. 1),  
 - supplying pulsation, ’- real part of the complex 
permittivity of a charge, tg - loss coefficient, E - rms value 
of the electric field. 
 

 

 

 

 

 

 

 

 

 
Fig. 1.  Cross section of the plano-parallel model 
 

In the model discussed it was assumed, that the heat 
exchange with surroundings takes place according with 
Newton’s rule [12] with different heat transfer coefficients on 
a perimeter of the system. Opposite vertical walls of the 
model (Fig. 1, x=a) give up the heat identically with the 
same coefficient V. Then there is a symmetry of the field 
distribution with respect to the plane x=0. The above 
conclusions were described by the following boundary 
conditions  
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In turn the heat exchange on the bottom and on the top 
horizontal edges takes place with different coefficients 
(respectively L for y=0 and H for y=b, Fig. 1). It is 
described by the following boundary conditions 
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In equations (3a,c,d) the total coefficients of the heat 
transfer were appeared. It means, that they consider the 
convection and radiation, as well.  
 Equations (1)-(3) form the boundary problem of the 
investigated stationary field.  

Solution of the boundary problem of the model  
The solution of (2) is a superposition of integrals: the 
particular one of the heterogeneous equation (Poisson’s) 
and a general one of the homogeneous equation 
(Laplace’s) [13]. Because the function (field source) on the 
right side of (2) is constant, the particular integral was 
anticipated in the form of the second degree polynomial. 

The general integral was determined by separation of 
variables [10] in Laplace’s equation (i.e. with the zeroed 
right side of (2)) with the constant (n/b)2. After consideration 
of the thermal conditions symmetry with respect to the 
plane x=0 (i.e. evenness of the solution) it was obtained 
finally, that 
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forxa and 0yb,  where: A,B - constants, Cn,Dn - 
coefficients of trigonometric series, n - dimensionless 
eigenvalues of the problem. Relation (4) fulfils equation 
(3b). With the aid of (3c) and (4) the number of constants 
and coefficients of the series were reduced. Relation (4) 
takes then the form of 
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Introducing (5a) to (3d) a constant was determined  
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where n are consecutive positive roots of equation (6). 
It is necessary to determine the unknown coefficient Dn in 
(5a), as well. For this reason (5a) was introduced to (3a)  
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Then relation (7) was multiplied by 









 )cos()sin(
b

y

b

yb
mm

m

L 



 and integrated by sides with 

respect to the coordinate y in a sector  <0,b>. Orthogonality 
of the given above sequence of functions {…} in the 
considered sector was used (respective proof is presented 
in the appendix). Finally coefficient Dm is expressed as 
below  
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where: B is given by formula (5b) and 

 









b

mm
m

L dy
b

y

b

yb
mN

0

2
2

)cos()sin()( 



 - is a square 

of the norm [12] of the functional sequence given in the 
above.  
After computation of the respective integrals in (8), taking 
advantage of the equation of eigenvalues (6) and 
simplifications, the investigated coefficient Dm was 
expressed by the formula  
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Finally the stationary temperature distribution in the system 
results from relation (1) 
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where: increase vs(x,y)  is given by formula (5a), coefficient 
Dn was determined with the aid of (9) (after exchange 
mn), where constant B and eigenvalues n  were 
determined from (5b) and (6), respectively.  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2   Simplified block diagram of the algorithm for determination 
of the maximal power density  
 
Selection of the power density conditioned by the 
sustained maximal temperature 
 Determination of the location and value of the maximal 
temperature is very important. Because on that basis the 
admissible power density gmax can be determined. In case of 
a busway it enables computation of the steady state current 
rating Imax (from (2a) after exchange I Imax). In turn of a 
dielectric charge the power density determines admissible 
electric field strength Emax (from (2b) after exchange E 
Emax). In both of the mentioned cases the temperature is a 
rising function of the density of a generated power. Than in 
order to determine maximal power density (and then Imax or 
Emax) it is sufficient to solve the following equation with 
respect to gmax  

(11)  maxmax),,( TggyyxxT MM  , 

where xM,yM - coordinates of the point of the maximal 
temperature, Tmax -  sustained maximal temperature for a 
busway or maximal temperature of a charge limited by 
material and technological requirements.  
In order to determine Imax or Emax the algorithm presented in 
Fig. 2 was developed. It was implemented on the 
Mathematica platform [14]. In Fig. 2 five functional blocks 
were shown:  
I) segment of introduction of the necessary data (in 
dependence on the analyzed model), 
II)  segment of investigation of the coordinates of the 
warmest point: 
 For determination of the extremes, functions accessible 
in the Mathematica programme [14] were used. The 
MAXIMIZE[…] function was chosen based on the analytical 
(symbolic) method for finding maximums of the function of 
two variables in the given area (rectangle {xa, 0yb} in 
case of a dielectric charge). Because of the thermal danger 
of surroundings, in case of a busway the domain of 
investigations is its perimeter {x=a, y=0, y=b}. In that 
situation maximums of the single variable function (the 
other variable is a coordinate of the edge) are determined 
on each edge. A final location of the point of the highest 
temperature on a perimeter results from the comparison of 
maximal values determined for each side of the busway. 
III)  segment for finding a starting interval <ga,gb>, 
IV) segment of determination of the maximal power density 
by the method of bisection [15] with accuracy   [16], 
V)  segment of computation of the steady state current 
rating Imax or maximal field strength Emax.  
 
Computational examples 
 The computer programme was developed in terms of 
the Mathematica package [14]. It determines field 
distributions (10) and computes the steady state current 
rating Imax or the maximal electric field strength Emax (Fig. 2). 
Two different models were investigated. In the first case an 
aluminum busway was analyzed. The following data were 
assumed:  

(12) 
a=0.005m,  b=0.04m, To=25oC, Tmax=100oC, =229W/(mK), 
(Tmax=100oC)=410-8m, =0.01oC, V=11.1W/(m2K), 
L=9W/(m2K), H=14.9W/(m2K), g=500W/m3, go=1000W/m3.

For the set of data (12) the following results were obtained: 
xM=a, yM=0.0151m, gmax=211255W/m3 and  Imax=919.2A. 
 In the second case capacitative heating of a fir plank 
with 10% of water contain was considered. The following 
data were assumed: 

(13) 
a=0.015m,  b=0.1m, To=25oC, Tmax=70oC, =0.13W/(mK), 
f=13.56MHz, ’=3.2, tg=0.09, =0.01oC,  V=11.1W/(m2K), 
L=9.7W/(m2K), H=12.9W/(m2K), g=500W/m3, go=1000W/m3. 

For the set (13) there were determined: xM=0m, yM=0.049m, 
gmax=21398.4W/m3 and  Emax=9930V/m. 

 Infinite series appearing in (5a) in computation of the 
field distributions was found to be rapid convergent. In case 
of the busway, with summation of more than two terms in 
(5a), results didn’t changed even on the eighth place after 
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the decimal point (independently of the choice of a point). In 
that conditions the summation was reduced to first three 
terms of (5a). In turn in case of the capacitative heating, the 
convergence of (5a) was slower and depended in higher 
degree from location of the point. The worst convergence 
appeared in corners of the system. Finally in the 
computations of a dielectric charge 30 terms of (5a) were 
considered. Increase of the summation index to 50 terms 
caused a change of the result on 4-th place after the 
decimal point at the given above points of the slowest 
convergence. 
 The results of computations of both models were shown 
in the graphic form. In Fig. 3 the field distribution was shown 
in a busway loaded by the steady state current rating 
Imax=919.2A. In turn in Fig. 4 the temperature field 
distribution was illustrated in a wooden plank with the 
maximal electric field strength Emax=9930V/m. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3  Distribution of the 
thermal field in an aluminum busway with loading by the steady 
state current rating Imax=919.2A 
 
 Verification of the presented method was carried out, as 
well. For this aim the obtained results were compared with 
the computations realized by the finite element method [17].  
It is a background of the  NISA/HEAT TRANSFER 
programme [18], which was utilized in the numerical 
analysis. The both models were approximated by a mesh 
consisting of 800 quadrupole elements and 2521 nodes. In 
order to discretise the boundary problem (1)–(3) on the 
plane (x,y), the NISA v. 16 programme takes advantage of 
Galerkin’s procedure [19]. It leads to the implicit scheme  
(i.e. to the matrix equation with respect to the temperature 
at nodes). It was solved by the iterative method [18]. This 
way the investigated temperature vector was determined. 
Then relative differences of the distributions were computed 
in accordance with the formula 
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TAN(x,y) - temperature distribution obtained by the 
developed analytical method, TFE(x,y) - temperature 
distribution computed by the finite element method. In Fig. 5 
and Fig. 6 relation (14) was illustrated in a busway and in a 
wood, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Distribution of the thermal field in a fir plank (of 10% water 
contain) with the admissible maximal electric field strength 
Emax=9930V/m 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 
 
Fig. 5 Relative differences of the temperature distributions obtained 
in a busway by the finite element method and by the analytical one 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6  Relative differences of the temperature distributions 
obtained in a fir plank by the finite element method and by the 
analytical one 
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Final remarks 
A) From Fig. 3 follows, that the temperature distribution in a 
busway is almost uniform in the whole region {xa, and 
0yb}. The difference between the maximal and minimal 
temperature considered in the system (not on a perimeter) 
is only T=T(x=0,y=0.375b)-(x=a,y=b)=0.07oC.  The 
physical reason of the above phenomenon is very large the 
thermal conductivity of aluminum. A different picture of the 
field is observed in case of the capacitative heating of wood 
(fig. 4). Important irregularity of the field distributions was 
observed there. The difference between the maximal and 
minimal temperature in a model reached up to 
T=T(x=0,y=0.49b)-T(x=a,y=b)=33.6oC. It is caused by the 
relatively small value of the thermal conductivity of wood. In 
Fig.  3 and 4 it can be noticed, as well, that (independent of 
a model) a slightly higher temperature arised on the bottom 
edge of the system (y=0) than on the top one (y=b). The 
reason of that, first of all, were higher values of the heat 
transfer coefficients from the top edges of the models than 
from the bottom ones i.e. H >L.. From Fig. 3 and Fig. 4 
follows, as well, that the highest temperature of both models 
was reached in their interior. Maximums on the plane  x=0 

are shifted with respect to the geometrical centre of the 
system in direction to the bottom edge (y=0) of the highest 
temperature. In Fig. 3 and Fig. 4 a symmetry can be noticed 
of the field distribution with respect to the plane x=0. It 
results from the same values of heat transfer coefficients 
from vertical walls of the models (x=a). Then the obtained 
solutions have a good physical interpretation.   
B) In both considered systems the relative differences of 
temperature distributions (computed by the finite element 
method and by the analytical one) are very small (Fig. 5 and 
Fig. 6). Because of a smaller density of the FE mesh larger 
deviations are observed, after all, in the case of the 
capacitative heating (Fig. 6). Then the presented solution 
(10) can be admitted as verified.  
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Appendix 
The proof of orthogonality of the functional sequence  
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To the above formula equation of eigenvalues (6) was substituted in the form  

 
n

HLn

nHL
n

b

b 

 cossin

222 


  and the same but with respect to the series of eigenvalues m. Hence it follows, that  

   
 

 



















 mn
HLn

nHL

n

Ln

nm
mn

HLm

mHL

HLn

nHL

mn

L

b

bbb

b

b

b

bb
mnI 



















coscoscoscos),(
2222

2222

22222222

2
 

 
 











 mn
HLm

mHL

m

Lm

nm b

bbb









coscos

2222

2222

22
 

(15) 
           

    0coscos
222222222

2222222222222222222
















bb

bbbbbb

HLmHLnnmmn

HLnLmLnHLmHLnmLHLmn
mn 

 .

  

A square of the norm of the considered functional sequence has to be determined yet 
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Then finally from relations (15) and (16) follows, that  
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QED (quod erat demonstrandum). 
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