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Plano-parallel models of the electrical systems with non-uniform 
heat exchange on a perimeter  

Part II. Transient temperature field  
 
 

Abstract. In the article a spatial-temporal heating curve and distribution of the local time constant of the plano-parallel system were determined by 
the method of states superposition. The heat exchange is characterized by three different coefficients of the heat transfer on a perimeter of the 
system cross-section. The transient component of the thermal field was found solving the boundary-initial problem for the equation of heat 
conduction by the separation of variables method. The presented solution can be a mathematical model of the transient thermal field in a rectangular 
DC busway or in a long dielectric capacitative heated. It was proved that the busway can be approximated by the element of lumped parameters. In 
opposition to that, long dielectric have to be modeled by the element of distributed parameters. The results were verified by the method of finite 
elements (program NISA v. 16) and presented in a graphic form. 
 
Streszczenie. Za pomocą metody superpozycji stanów w artykule wyznaczono przestrzenno-czasową krzywą rozgrzewu i rozkład lokalnej stałej 
czasowej układu płasko-równoległego. Wymianę ciepła charakteryzują trzy różne współczynniki jego przejmowania na obwodzie przekroju układu. 
Składową przejściową pola termicznego uzyskano rozwiązując metodą separacji zmiennych zagadnienie brzegowo-początkowe dla równania 
przewodnictwa cieplnego. Prezentowane rozwiązanie może stanowić model matematyczny nieustalonego pola termicznego w prostokątnym 
szynoprzewodzie DC lub w długim dielektryku nagrzewanym pojemnościowo. Wykazano, że szynoprzewód może być aproksymowany elementem o 
parametrach skupionych. W przeciwieństwie do tego, długi dielektryk musi być modelowany elementem o parametrach rozłożonych. Wyniki 
sprawdzono za pomocą metody elementów skończonych (program NISA v. 16) i przedstawiono w postaci graficznej.(Płasko-równoległe modele  
układów elektrycznych z nierównomiernym oddawaniem ciepła na obwodzie. Część II. Nieustalone pole temperatury). 
 
Keywords: analytical methods of the field theory, transient heat flow, heating curves, thermal time constants 
Słowa kluczowe: analityczne metody teorii pola, nieustalony przepływ ciepła, krzywe rozgrzewu, termiczne stałe czasowe 
 
Introduction 
 The second part of the paper is focused on dynamic 
states of the temperature in plano-parallel systems 
presented in [13]. The aim of article is determination of 
parameters of the transient state: spatial-temporal heating 
curves (step characteristics) and thermal time constants. 
The mentioned parameters are very important in the 
analysis of transient states arised in a busway in effect of 
the supply switching on, the change of a load or a shortage. 
A knowledge of the mentioned parameters is also useful in 
the investigation of  the possible system overloading by a 
current larger than the steady state current rating in the 
process of irregular or interceptive regime [1], [2]. In turn, in 
case of the capacitative heating, the transient state plays 
significant role in the rapid heating by a large power [3], [4]. 
 Analogical as in part I of the paper [13], the 
nonstationary thermal field will be determined by the 
analytical way. 
  
Mathematical model of the transient component of a 
heating curve 
 The heating curve of a model was determined by the 
method of the states superposition [5], [6] 
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where: vs(x,y), - increase of a temperature of the steady 
component, vt(x,y,t) - increase of a temperature of the 
transient component ( )0),,(lim 
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switching on of heat sources [13, formula (2a,b)],               
To - ambient temperature. 
The stationary distribution vs(x,y) was determined in [13]. 
For that reason only the transient component of a curve 
vt(x,y,t) was analyzed in the present paper.  
 An initial-boundary problem for the transient component 
vt(x,y,t) was formulated on the basis of (1) and taking 
advantage of a boundary problem of the stationary 
component vs(x,y) [13, formulas (2), (3)]. 

 In accordance with the method of states superposition 
[5], [6], the nonstationary increase vt(x,y,t) does not depend 
on an excitation and it is described by the following 
homogeneous equation   

 (2)      0
),,(1),,(),,(

2

2

2

2














t

tyxv

y

tyxv

x

tyxv ttt


   

for  ax    and  by 0 ,  0t  where: 

=/(c)  -  diffusivity,     - specific   thermal   conductivity  
 - density, c - specific heat of a material, t - time, (2a,b) - 
dimensions of the system cross-section [13, Fig. 1]. 
Boundary conditions for vt(x,y,t) are analogical with [13, 
formulas (3)]  
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where HLV are the heat transfer coefficients on a 
perimeter of the cross-section shown in [13, Fig. 1]. Then in 
accordance with the method of states superposition [5], [6], 
the initial condition of the transient component is equal to 
the negative stationary component  

(4)  ),()0,,( yxvtyxv st  . 

Relations (2)-(4) formulate the problem of the transient 
component of a heating curve. 
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Solution of the boundary-initial problem and 
determination of heating curves model  
 The homogeneous equation of heat conduction (2) was 
solved by the separation of variables [5], [7]. As separation 
constants (n/b)2 and (m/a)2  were assumed. Advantage of 
the thermal conditions symmetry with respect to the plane 
x=0 was taken. In the result it was obtained  
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forxa, 0yb and t>0,  where: Fmn, Gmn - coefficients of the 
trigonometric series, m,n - dimensionless eigenvalues of 
the problem. Relation (5) fulfills condition (3b). Then (5) was 
introduced to (3c). It leads to elimination of the coefficient 
Fmn. Hence it follows, that 

(6) 

t
ba

m n
nn

n

L
mmnt

nm

e
b

y

b

yb

a

x
Gtyxv


















 










2

2

2

2

1 1

)cos()sin()cos(),,(









 
forxa, 0yb and t>0.  

Introducing (6) to (3a) the first equation of eigenvalues was 
obtained as  
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where m are the consecutive positive roots of (7). In turn, 
after introduction of (6) to (3d) the second equation of 
eigenvalues was obtained with respect to the roots n. It is 
identical as in part I of the paper [13, formula (6)]. For this 
reason the same constant (n/b)2 can be assumed with 
separation of variables in equations (2) and [13, formula 
(2)].  
The unknown coefficient  Gmn in (6) should be determined, 
as well. For this reason an initial condition (4) for the 
transient component was utilized. After substitution of (6) to 
(4) and taking advantage of  [13, formula (5a)] it was 
obtained 
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where: B, Dk were determined in [13, formulas (5b) and (9)] 
and the indices were changed nk in the last component of 
the right side of (8).  
Then relation (8) was multiplied by cos(ix/a) and integrated 
by sides in a sector <-a,a> with respect to the coordinate x. 
Analogical operations were done with the aid of function 
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(proved in [13, appendix]) and of the sequence cos(ix/a) in a 
sector <-a,a> (proof is given in an appendix to the present 
article). Finally, the coefficient Gil is expressed below 

 

(9) 

 
,

)()(

)cos()sin()cos(,

22
0

lIiI

dxdy
b

y

b

yb

a

x
yxv

G

b

ll
l

L
i

a

a
s

il




















 






 

where: 

 









b

ll
l

L dy
b

y

b

yb
lI

0

2
2

)cos()sin()( 



 - is a square of 

the norm [8] of the sequence 







 )cos()sin(

b

y

b

yb
ll

l

L 



,  





a

a
i dx

a

x
iI )(cos)( 22   - square of a norm of the 

sequence )cos(
a

x
i .  

It is worth to notice, that vs(x,y) introduces to (9) a third index 
k  (next to i, l). It follows from the right side of (8). Hence 
with the computation of integrals in (9) orthogonality of the 
functional sequences with arguments (ky/b) and (ly/b) 
should be considered in a sector <0,b>. It leads to a closed 
form of Gil. After taking advantage of eigenvalues equations 
and some simplifications it was obtained  
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Finally, after superposition with respect to relation (1) the 
spatial-temporal curves T(x,y,t) of heating were obtained. 
The second component of (1) was determined in [13, 
formula (5a)], and the third one is described by (6) (where 
Gmn results from (10)-(12) after the exchange im, ln). 

Thermal time constants 
 After consideration of determined distributions vs(x,y)  
and vt(x,y) in (1), it is hard to evaluate duration of the 
transient state on the basis of T(x,y,t). For this reason it is 
determined with some approximation with the aid of the 
known criterion of an averaged (locally) time constant [14], 
[15]. It relies on approximation of each point of the system 
by the first order inert element. The step response of such 
an object is generally known, as 
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where (x,y) - averaged (locally) time constant. 
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After determination of 
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 from equation (13) and 
integration by sides with respect to a time t one obtains 
(x,y)  in the form [9], [10], [11] 
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where (1) was utilized. Introduction of (6) to (14) leads to 
determination of the investigated time constant  
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Distributed parameters of the analyzed system cause, that 
heating curves at each of its point grow with a different time 
constant. Duration of the transient state at a location (x,y) is 
estimated for 4(x,y).  
 
Computational examples 
 The spatial-temporal heating curves and time constants 
of the investigated systems were determined with the use of 
Mathematica 7.0 package [12]. Data sets from [13, (12), 
(13)] were supplemented by the following parameters: for a 
busway c=910J/(kgK), =2720kg/m3 and 
(Tśr=62.5oC)=3.54510-8m and for a fir plank 
c=2400J/(kgK), =450kg/m3.  
 Double series in (6) (similarly as the single one in [13]) 
occurred to be rapid convergent. For a busway the three 
terms of the expansion of each sum in (6) were considered. 
Adding ten consecutive terms in both sums causes for t>5s 
a change of the result just on 8-th position after the decimal 
point at each point of the system. In turn, in computations of 
a dielectric charge 50 terms of each sum in (6) were 
considered.  The increase of indices to 100 in the both 
sums of (6) causes for t>5s a change of the result on 4-th 
position after the decimal point at the points of the slowest 
convergence. 
The results of computations of both models were shown in 
a graphic form. In Fig. 1, 2 spatial distributions of the field in 
a busway were shown for smaller and larger instants, 
respectively. In turn, in Fig. 3, 4 temperature distributions in 
the fir plank were illustrated at analogical time instants. In 
Fig. 5, 6 heating curves were shown at the selected points, 
in a busway and in a wood, respectively. In Fig. 7 
distribution of the averaged (local) time constant in a fir 
plank was illustrated. For the busway a value of the time 
constant is ca. =878.6s and practically doesn’t change its 
value in the whole region. For this reason its diagram was 
not included.  
The presented method was verified analogously as in [13]. 
For this aim the obtained results were compared with 
computations realized with the aid of the NISA programme 
[16] by the finite element method [17]. Namely to  [13, 
formula (14)] distributions (1) at the selected time instants 
were introduced. In the result relative differences in a 
busway were illustrated in Fig. 8, and in a fir plank in Fig. 9. 
It was checked, that relative differences for larger times do 
not exceed 0.0023% at a busway and 0.08% at a fir plank 
(for xa, 0yb). 
 
 
 
 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 Spatial distribution of the thermal field in a busway at the 
instant t=10 s 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2 Spatial distribution of the thermal field in a busway at the 
instant t=800 s 
 
Final remarks 
A) It follows from Fig. 1 and Fig. 2, that for smaller and 
larger times the spatial temperature distributions in a 
busway are close to uniform ones. A physical reason of that 
phenomenon is the large thermal conductivity of aluminum. 
It can be noticed, as well, that distributions at the 
consecutive time instants and the stationary one in [13] 
show a close similarity. However they are significantly 
shifted with respect to each other along the temperature 
axis.  
 In turn, in the capacitative heating analysis (Fig. 3, 4) 
much more uniformity of the field distribution can be noticed 
for shorter times (Fig. 3) than for the longer ones (Fig.4).  
The small thermal conductivity of wood causes, that at the 
beginning of the transient state the influence of a cooling 
process of the system on a shape of the field is relatively 
small. In that time period a dominant role in the forming of 
distributions play heat sources (which are uniform).  The 
similar effect was noticed in the paper [4], as well, in which 
one dimensional problem of the food heating was analyzed 
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Fig. 3 Spatial distribution of the thermal field in a fir plank at the 
instant t=20 s 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4 Spatial distribution of the thermal field in a fir plank at the 
instant t=1700 s 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5  Heating curve of the busway 
 
B. A large value of the thermal conductivity of a busway 
causes, that the time constant is practically the same 
(=878.6s) at the whole area {forxa and 0yb}. It 
confirms practically the same heating curves (Fig. 5) at 
different points of the system. Then in the busway a spatial 
distribution of the field can be neglected and it can be 
treated as the element with lumped parameters. In turn, in 
case of capacitative heating  the heating curves (Fig.6) and 
the time constant (Fig. 7) significantly depend on the point 
location. Larger vales of (x,y) can be observed in Fig. 7 at a 

half of the height of a fir plank i.e. with yb/2 for xa. The 
same conclusion follows from Fig. 6 (after the 
consideration, that each curve possess its own asymptote 
and a tangent).  Then the heated dielectric is the element of 
distributed parameters. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6 Heating curves at the selected points of a fir plank 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7 Averaged time constant in a fir plank in the function of 
geometrical coordinates 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8 Relative differences of the temperature distributions obtained 
in a busway by the finite element method and by the analytical one 
at the instant t=10 s 
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Fig. 9  Relative differences of the temperature distributions 
obtained in a fir plank by the finite element method and by the 
analytical one at the instant t=1700 s 

 
C. In the both considered systems (for shorter and longer 
times) relative differences of the field distributions 
(computed in the analytical and by the numerical way) are 
very small. It is illustrated for example in Fig. 8 and in Fig. 9. 
Therefore the method presented here is verified. 
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Appendix 

Proof of an orthogonality of the sequence )cos(
a

x
m  in a 

sector aa, .  

For nm it takes place 
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Introducing the equation of eigenvalues (7) in the form 

m
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V
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a



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 cossin   and the same relation but with respect 

to the series n to the above formula, in the result one 
obtains  
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A square of the norm of the considered sequence is equal 
to 

 .
cossin

1)(cos)( 22









 

 n

nn
a

a
n adx

a

x
nN


   

After introduction of the eigenvalues equation and some 
simplifications it was obtained, that   

(17) .0cos1)( 2
2

2 









 n

n

V a
anN 




 

Then finally from relations (16) and (17) follows 
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QED (quod erat demonstrandum).           
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