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Abstract. The rise of the Smart Grid and Microgrid concepts require load demand control at short lead times, at a resolution of minutes, leading to 
the need for Very Short Term Load Forecasting (VSTLF). This study builds upon previous research of load forecast and investigates the relationship 
between system characteristics and the achievable of VSTLF accuracy. The results presented here are based on study and simulated forecasting of 
three years’ worth of real load data obtained from the New York Independent System Operator (NYISO). 
 
Streszczenie. Koncepcje Sieci Inteligentnych oraz MicroSieci wymagają sterowania z krótkim czasem wyprzedzania, rzędu minut, co prowadzi do 
zapotrzebowania na Bardzo Krótko Terminowe Przewidywanie Obciążenia (ang.: Very Short Term Load Forecasting - VSTLF). Przedstawione 
badnia są kontynuacją poprzednich nad przewidywaniem obciążenia i dotyczą związku między cechami systemu i osiągalną dokładnością VSTLF. 
Przedstawione wyniki są oparte na badaniu oraz na modelowaniu trzyletniego przewidywania obciążenia rzeczywistego, na podstawie danych 
otrzymanych od New York Independent System Operator (NYISO). Odziaływanie cech systemu na krótkoterminowe przewidywanie obciążenia 
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Introduction 

With the rise of Artificial Intelligence (AI) and Machine 
Learning (ML) techniques, Load Forecasting (LF) has 
become one of the primary fields of research in power 
systems engineering. As shown in Figure 1, the number of 
published papers on LF has increased exponentially over 
the past three decades. A large percentage of the studies 
have used AI/ML methods, with Artificial Neural Networks 
(ANN)[1] a particularly popular method. Other ML 
techniques used for LF include Fuzzy Logic, Support Vector 
Machines, univariate methods which are commonly used 
include ARIMA models and exponential Smoothing[2]-[6], 
and many more as discussed in Hippert’s excellent 
review[1]. The proliferation of research in this area indicates 
the importance of LF and the evolving needs for accurate 
forecasts. Generally speaking, three kinds of forecasting 
lead-times are considered, and by extension, three types of 
load forecasting are defined: long, medium and short 
term[7]. Long term (years in advance) forecasting is 
important for planning investment in infrastructure, modeling 
pricing policies, required power generation forecasts, 
maintenance and the like. Short-term (hours in advance, 
generally up to 24 hours) forecasting is used for prediction 
of maximum load, load-flow study results, planning load 
switching and/or shedding and economic dispatch. Short 
term forecasting is the most common task considered in the 
literature; do to its criticality for adequate grid operations. 

 
Fig. 1. Number of published papers on Load Forecasting, by year. 
Data taken from Medline(PubMed) 
 

Medium-term (days/weeks/months in advance) 
forecasting is also utilized to assist in the above tasks, with 
the predictions more accurate than long-term forecasts but 
inferior than the forecasts obtained by short-term 
forecasting. Some of the factors which enable more 
accurate forecasts at shorter time horizons include real-time 
weather forecasts, the naturally slow variations in aggregate 
load and real-time knowledge of anomalous events which 
may not have been anticipated in advance. With the rise of 
the Smart Grid and Microgrid concepts, real-time 
forecasting at very short lead times are required. This is due 
to the stochastic nature of renewable energy sources such 
as photovoltaic (PV) panels and wind farms. For this 
purpose, Very Short Term Load Forecasting (VSTLF) has 
been defined and studied. Regardless of the lead-time, the 
multitude of techniques demonstrate the underlying fact that 
there is no accepted ”best” LF method[8], as evidenced by 
similar methods obtaining very different results for different 
systems. 

In most current literature, a LF method is chosen for a 
forecasting task based on the lead-time and the nature of 
the past (e.g. historical loads) and future data (e.g. weather 
forecasts) available for the system being predicted. Some 
previous work[9] discussed Very Short Term Load 
Forecasting has studied the power system characteristics 
and shown that a given VSTLF method’s accuracy is 
extremely variable, based mostly on the statistical 
characteristics of the system it is applied to. This earlier 
research concluded that a VSTLF method should be 
chosen based on system characteristics, the required 
accuracy and tolerance for model complexity. Furthermore, 
most research has studied very large grids, which often 
supply power to an entire country and are not 
representative of smaller power systems which are of very 
different statistical characteristics. In this paper, the 
previous work is built upon and a heuristic lower-bound for 
VSTLF accuracy is observed when applying forecasting 
methods to different systems. The results are based on 
three years’ worth of load data collected from the eleven 
power systems operated by the New York Independent 
System Operator (NYISO)[10], sampled once every five 
minutes. The NYISO zone map is shown in Fig. 2. Five 
VSTLF techniques are compared, and show that three of 
them converge to solutions which produce small, usually 
uncorrelated residuals.  
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The contribution this paper makes to smart-grid 
research is twofold. STLF is required for demand response 
in systems powered traditional generation facilities - 
generators, etc. With increased penetration of renewable 
energy sources of highly stochastic nature (PV and wind 
power) into the smart grid, the demand-response problem 
requires shorter-termed, accurate forecasts. VSTLF will 
ensure that generation can accurately anticipate load 
demand and meet it even while relying on these highly 
stochastic power sources. Additionally, with increased 
smart-grid research focusing on load-forecasting 
aggregation [11][12] and demand response[13] at the 
consumer level, aggregation techniques can be applied to 
the high voltage system to improve overall demand 
response capabilities. The VSTLF methods discussed in 
this work and the system variability investigated can 
contribute to development of effective aggregation 
techniques. 

 

 
 

Fig. 2. NYISO zone map 
 
Very short term load forecasting 
A. Definition and Framework 

While no formally accepted definition of VSTLF exists, 
past studies have used the term to indicate load forecasting 
from one minute to half an hour[5][14] lead time. Its primary 
function is providing a generation target for economic 
dispatch and load frequency control. By accurately 
forecasting the load at a future point, the grid frequency can 
be held at its nominal value by preventing under-generation, 
while holding extra power generation to a minimum. 
Another use of VSTLF results is in forecasting the values of 
state variables for quasistatic[15] and dynamic[16] Power 
System State Estimation schemes(PSSE). In modern power 
systems, PSSE is general carried out every several 
minutes, which makes VSTLF a natural candidate for the 
forecasting step. In this study, we define VSTLF as 
forecasting the load five minutes ahead of time. 

B. System Characteristics 
As discussed in previous work[9] and corroborated later 

in this work in Figure (6), system size and autocorrelation 
are of critical importance to the quality of forecasts. At 
opposite sides of the characteristic spectrum are the 
systems of New York City (NYC) and Millwood. Figures (3) 
and (4) graphically illustrate the significant differences 
between the sizes of the two systems and the nature of the 
load fluctuations observed in each one. To compare the 
load changes in two systems of very different sizes, Load 
Percentage Difference is defined as 
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Fig. 3. Sample weekly data for New York City and Millwood 

 

 
Fig. 4. Average weekly data for New York City and Millwood 

 
Table 1 Size and autocorrelation of the NYISO power systems 

 
The size of each system is indicated by its mean load, 

and the variability by the range, defined as 
 

(2) 
95th percentile load

range
5th percentile load

  

 

The table exhibits the normalized lag-1 autocorrelation, as 
well as the highest (in absolute value) autocorrelation value, 
with its corresponding lag parenthesized. For instance, in 
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NYC, the highest autocorrelation factor is 0.57, at lag 2, 
with an autocorrelation factor of 0.43 at lag 1. 
 

C. Methods and Models 
The five methods used for this study are described 

below. 
1) Wiener Process (WP) 

Due to the short time interval between load samples and 
the slow load variations, reasonably accurate forecasts can 
be obtained by modeling the load signal as a random walk: 

(3) [ ] [ 1] [ ]X n X n w n    

with w[n] Gaussian white noise of zero mean and variance 
σ2. Due to the noise having zero mean, the forecast load is: 

(4) ˆ [ 1] [ ]X n X n   

While all other forecasting algorithms presented will 
improve upon this method, this technique is important to 
present as a benchmark due to its simplicity; it requires no 
historical data or parameter estimation. 
 

2) Difference Averaging (DA) 

We define the load difference as: 

(5) [ ] [ ] [ 1]d n X n X n    

Rearranging terms, the load can be expressed as 

(6) [ ] [ 1] [ ]X n X n d n    

Both load and load difference have periodic means[9], so 
given X[n-1], the load at time n can be estimated as 

(7) ˆˆ [ ] [ 1] [ ]X n X n d n    

After averaging the difference signal to obtain the periodic 
mean 
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The estimated difference signal is applied to Eq. (6). 
 

3) Difference Averaging with MA(1) correction (DAMA1) 

We define the error process as: 

(9) ˆ[ ] [ ] [ ]e n X n X n   

Examination of the error process obtained using the 
simple DA model shows significant correlation between 
adjacent error samples (one lag) and near-zero correlation 
for longer lags. Therefore, modeling the error as a first order 
moving-average (MA(1)) process is appropriate, and offers 
a potential correction factor, which can also be viewed as 
feedback.  

Assuming the error process is of a zero-mean, Gaussian 
distribution, the optimal estimator for the error at time n is 
the optimal linear estimator. If we denote, for brevity’s sake, 
y = e[n]; z = e[n - 1], the optimal estimator is given by 
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substituting 0z y   yields 
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and since 
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the error process can be optimally estimated as 
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given α, the error resulting from DA forecasting is estimated 
as: 

(14) ˆ ˆˆ ˆ[ ] [ 1] ( [ 1] [ 1])DA DAe n e n x n x n          

and the forecast load value is corrected by subtracting the 
estimated DA error: 

(15) 
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this correction improves upon the simple DA for almost all 
systems, as evidenced by lower MAPE and less correlated 
residuals. 

 

4) ARMA modeling using the Box-Jenkins  

The Box-Jenkins method[18] is a common method used 
for time-series analysis utilizing ARMA or ARIMA models to 
forecast future values based on past values. In this study, 
ARMA models ar used to forecast the load difference d[n], 
and it is substitute into Eq. (6) to obtain a load forecast. 
Since the size and statistical properties of the different 
power systems vary, the order and estimated parameter 
values vary accordingly between the systems. For a given 
ARMA(p,q) model, the load difference is modeled as: 
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When forecasting d[n], the past values d{[m] : m < n} 
are known. The coefficients ai; bi are estimated during the 
model training stage, using Least-Squares techniques, and 
the past white-noise samples {w[m] : m < n} are estimated 
”online”, along with the load differences. 
 

5) Double Exponential Smoothing (DES) 

The well-known Holt-Winters double exponential 
smoothing (DES) method[19][20] has been used 
extensively for general time-series forecasting problems, 
including load-driven power system state forecasting[21]. 
The DES method is well-suited to time-series exhibiting a 
trend, but no seasonal factors. In this model, the level S[n] 
and trend T[n] are estimated as 
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and the next load is forecast to be 

(18) ˆ [ 1] [ ] [ ]X n S n T n    

Using this method, the parameters α and γ  are 
estimated from the training data, and the model is applied to 
the test data to obtain error values. Incorporation of 
seasonal factors has been explored for STLF 
applications[22], and while in this study we experimented 
with seasonal factors as well, this did not improve results. 
This is likely due to the fact that the load signal changes 
slowly and is sampled at high frequency, so enough very 
recent measurements make ”distant” samples which are 
correlated due to seasonal and periodic factors, redundant. 
 

D.  Residual Analysis 
We evaluate the accuracy of the forecasting methods by 

measuring the Mean Absolute Percentage Error (MAPE), 
the widely accepted measure for forecasting accuracy[1]: 
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1

ˆ1
%

N
i i

i i

x x
MAPE

N x


   

After calculating the MAPE, the question of potential 
improvement should be asked. One indication of little room 
for progress is the convergence of the error values for 
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several different techniques. A more rigorous approach is 
commonly applied using the Box-Jenkins methodology[18].  
 
 
 

 
Fig. 5. Autocorrelation of errors obtained by forecasting the NYC 
system loads during a week in August 2012. The zero, one and 
two-sample-lag coefficients are marked with a diamond, circle and 
’x’, respectively. It can be observed that the one-lag correlation 
evident in the DA plot is nullified in the DAMA1 plot. 
 

 
Fig. 6. Top to Bottom: MAPE vs. system size; autocorrelation vs. 
system size; MAPE vs. autocorrelation 
 

Table 2 MAPE[%] FOR FORECASTING A SAMPLE WEEK IN AUGUST 2012 

 
 

Results 
Table (II) summarizes the performance of all five 

methods for a sample week in August 2012. It can be seen 
that the simple Weiner Process forecaster is easily the 
worst, with Difference Averaging method performing better, 
with improvement varying greatly among the systems. The 
latter three techniques are always better than the DA 
technique, again, with improvement depending on the 
system in question. The superior techniques exhibit nearly 
identical performance, for all systems. 

We examined the residuals vectors of all results 
obtained in this study, and found that the errors produced 
by the latter three techniques are uncorrelated for almost all 
systems at all times. Figure (5) displays sample error vector 
autocorrelation values obtained when forecasting NYC (a 
large system exhibiting high load difference correlations). 
 
Conclusions 

We point out a few conclusions from the results shown 
above: 
 When examining the relationships that exist between 

system size, autocorrelation and forecasting MAPE, it 
becomes clear, as shown in Figure (6), that large 
systems tend to be of significant correlation between 
load changes and tend to be easier to predict. In other 
words, accurate forecasts are indicative of large system 
size or correlation, and often both. 

 Besides similar MAPE values, the three superior 
techniques produce error vectors usually devoid of 
significant autocorrelation. While this is not conclusive 
proof of optimal performance, given that the three 
techniques have fundamentally different approaches, it 
is a strong indicator that further improvement is unlikely 
in the case where the errors are uncorrelated. 
Based on these conclusions we suggest several 

directions for further research: 
 Recent research has focused on load aggregation 

techniques at the residential level[11][12]. Rudimentary 
experimentation not detailed in this paper has shown 
promising results in attempts to apply similar techniques 
at the high-voltage level. 

 Introduction of seasonal factors has been shown to 
improve forecasting when using ARMA models for 
VSTLF[17]. Although we experimented with seasonal 
factors using double exponential smoothing and found 
them to be of negligible value, we did not apply them to 
the ARMA technique. Several systems exhibited 
maximal autocorrelation at a 288-sample (one day) lag, 
as shown in table (I). This seems to indicate that a 
seasonal factor of period 288 may be beneficial to the 
ARMA model. 

 As discussed above, MAPE is the widely accepted error 
measure for LF studies, despite its deficiencies in 
accurately modeling the costs of poor forecasts or the 
costs of implementing complicated methods. More 
sophisticated load forecasting cost functions would 
undoubtedly improve the framework for tailor-fitting a LF 
technique to a given application. 
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