Politechnika Częstochowska, Instytut Telekomunikacji i Kompatybilności Elektromagnetycznej

Napęd pojazdu elektrycznego z wielofazowym silnikiem synchronicznym z magnesami trwałymi

Streszczenie. W pojazdach z napędem elektrycznym popularnym rozwiązaniem jest stosowanie silników synchronicznych z magnesami trwałymi. Dzięki wysokiej gęstości mocy i wydajności, zwłaszcza silniki wielofazowe, doskonale sprawdzają się w aplikacjach, które wymagają dużej niezawodności pracy. W pracy zaprezentowano badania symulacyjne układu napędowego z 3-fazowym i 5-fazowym silnikiem PMSM. Opracowano komputerowe modele napędów oraz przeprowadzono badania dla zadanych warunków pracy i założeniu uszkodzenia obwodu zasilania silników. Obserwowano charakterystyki czasowe wybranych wielkości elektromechanicznych oraz porównano uzyskane wyniki.

Abstract. Presently permanent magnet synchronous motors (PMSM) are the main types of motors used for electric vehicles. Owing to its high power density and high efficiency, a multiphase fault-tolerant permanent-magnet synchronous machine is often considered an excellent solution for reliable applications. This paper described computer models of 3-phase and 5-phase permanent magnet motor drives. The simulation results are presented. (**Multiphase permanent magnet synchronous motor drive for electric vehicle**).

Słowa kluczowe: silnik synchroniczny z magnesami trwałymi, silnik wielofazowy, pojazd elektryczny Keywords: permanent magnet synchronous motor, multiphase motor, electric vehicle

Wstęp

W ostatnich latach szeroko popularyzowane są koncepcje obniżania negatywnego oddziaływania przemysłu i pojazdów na środowisko w postaci emisji szkodliwych substancji oraz hałasu. Podejmowanych jest w tym kierunku wiele inicjatyw i działań, włącznie z uchwalaniem oficjalnych wytycznych, np. Dyrektyw Parlamentu Europejskiego i Rady, a także nawiązujących do nich krajowych programów [1,2,3]. Jedną z głównych idei zawartych w tych dokumentach jest promowanie energooszczednego oraz ekologicznego transportu. Dzięki ciągłemu doskonaleniu technologii gromadzenia energii elektrycznej, znacznemu rozwojowi elementów energoelektronicznych, postępowi w konstrukcji silników elektrycznych, jak również poszukiwaniu skuteczniejszych metod regulacji, stawiane wymagania doskonale mogą spełniać pojazdy z napędem elektrycznym [4,5,6]. Napęd elektryczny jest cichy oraz całkowicie czysty ekologicznie w miejscu eksploatacji, ponieważ nie wydziela żadnych szkodliwych substancji. Ze względu na swoje właściwości mechaniczne i elektryczne, jako silniki w pojazdach elektrycznych, chętnie stosowane są bezszczotkowe silniki z magnesami trwałymi (PMSM, BLDC). W zastosowaniach przemysłowych obecnie najbardziej popularne są silniki trójfazowe. Jednakże z coraz większym zainteresowaniem spotykają się silniki wielofazowe, np. 5, 6 czy 9, 11 fazowe. Napędy z tymi silnikami są wprawdzie droższe, ze względu na większą liczbę faz, a więc wynikającą z tego konieczność użycia większej liczby elementów elektrycznych i układów energoelektronicznych. Wymagają one również bardziej złożonego sterowania, ale charakteryzuje je większa niezawodność i odporność na Jest to szczególnie ważne zakłócenia. W tych zastosowaniach, w których poprawna praca napędu w każdych warunkach ma zasadnicze znaczenie, np. w pojazdach z napędem elektrycznym (samochodach, motocyklach, motolotniach, łodziach) [4,7,8,9,10].

W pracy, na przykładzie pojazdu elektrycznego, zaprezentowano badania symulacyjne układu napędowego z wielofazowym silnikiem synchronicznym z magnesami trwałymi. W tym celu opracowano komputerowy model napędu z pięciofazowym silnikiem PMSM. Przeprowadzono badania dla zadanych warunków pracy i obserwowano charakterystyki czasowe wielkości elektromechanicznych silnika. Uzyskane wyniki porównano z rezultatami uzyskanymi dla układu napędowego, w którym zastosowano trójfazowy silnik synchroniczny z magnesami trwałymi.

Budowa elektrycznego układu napędowego EV

Na rysunku 1 przedstawiono uproszczony schemat układu z trójfazowym silnikiem PMSM. Może on stanowić samodzielny napęd pojazdu elektrycznego lub też być częścią napędu hybrydowego. Poza silnikiem, w jego skład wchodzi falownik napięcia wraz z układem sterowania, zasilany, poprzez przetwornicę DC/DC, ze źródła napięcia stałego. Przetwornica ma za zadanie utrzymanie odpowiedniego napięcia magistrali zasilającej, może ona również wspomagać odzysk energii [4]. W najprostszym przypadku zasobnikiem energii jest bateria akumulatorów, ale w bardziej zaawansowanych rozwiązaniach dodatkowo stosuje się również superkondensatory (poprawa dynamiki napędu) lub też zasilanie z ogniwa wodorowego. Podobną strukturę ma napęd z silnikiem wielofazowym, jednakże ze względu na większą liczbę faz, w tym przypadku, rozbudowaniu ulega komutator elektroniczny oraz układ sterowania. Schemat napędu z pięciofazowym silnikiem synchronicznym z magnesami trwałymi zaprezentowano na rysunku 2.

Rys.1. Schemat blokowy napędu elektrycznego z trójfazowym silnikiem PMSM

Rys.2. Schemat elektrycznego układu napędowego z pięciofazowym silnikiem PMSM

Model komputerowy

Modele matematyczne silników PMSM oparto na opisie w układzie współrzędnych naturalnych (1), (2), który do celów sterowania układem najwygodniej jest przekształcić za pomocą transformacji Parka do składowych w układzie ortogonalnym dq. Dla silnika trójfazowego przyjmuje on wówczas postać (3)+(6). W przypadku silnika pięciofazowego jego model składa się z zależności przedstawianych w dwóch układach ortogonalnych d_1q_1 i d_2q_2 [5,9,11].

(1)
$$\mathbf{u}_{sk} = \mathbf{R}_{s} \cdot \mathbf{i}_{sk} + \frac{d\mathbf{\Psi}_{sk}}{dt}$$

(2)
$$\Psi_{sk} = \mathbf{L}_s \cdot \mathbf{i}_{sk} + \Psi_f$$

(3)
$$u_d = R_s \cdot i_d + L_d \cdot \frac{di_d}{dt} - \psi_q \cdot \omega$$

(4)
$$u_q = R_s \cdot i_q + L_q \cdot \frac{di_q}{dt} + \psi_d \cdot \omega$$

(5)
$$\psi_d \cdot = L_d \cdot \iota_d + \psi_f$$

$$(6) \qquad \psi_q \cdot = L_q \cdot i_q$$

gdzie: \mathbf{u}_{sk} , \mathbf{i}_{sk} – wektory napięć i prądów fazowych, \mathbf{R}_s – macierz rezystancji uzwojeń stojana, ψ_{sk} – wektor strumieni skojarzonych stojana, \mathbf{L}_s – macierz indukcyjności uzwojeń stojana, ψ_f – wektor strumieni wzbudzenia od magnesów trwałych skojarzony z uzwojeniem stojana, k – numer fazy,

podłużnej i poprzecznej, L_d , L_q – indukcyjności stojana w osi podłużnej i poprzecznej, ψ_d , ψ_q – strumienie skojarzone z uzwojeniem stojana w osi podłużnej i poprzecznej, ω – prędkość kątowa wirnika.

Moment elektromagnetyczny *M*_e można ogólnie przedstawić jako wyrażenia [12]:

(7)
$$M_{e} = J \frac{d\omega}{dt} + B\omega + M_{obc}$$

(8)
$$M_{e} = C \cdot p \cdot [\psi_{d} \cdot i_{q} - \psi_{q} \cdot i_{d}]$$

gdzie: J – moment bezwładności układu napędowego, B – współczynnik tarcia lepkiego, M_{obc} – moment obciążenia, C – stała zależna od rodzaju silnika (1,5 - dla silnika trójfazowego, 2,5 - dla silnika pięciofazowego), p – liczba par biegunów.

Komputerowe modele układów napędowych wykonano w programie Matlab/Simulink z wykorzystaniem biblioteki SimPowerSystems. Przygotowano schematy z 3-fazowym oraz 5-fazowym silnikiem PMSM. W pętli sterowania prędkością zastosowano regulator typu PI, natomiast w pętli wewnętrznej histerezowy regulator prądów fazowych. Następnie przeprowadzono symulacje dla różnych stanów i warunków pracy układów. Na rysunku 3 przykładowo zaprezentowano schemat układu napędowego z pięciofazowym silnikiem synchronicznym z magnesami trwałymi (65kW, 350A, 2500obr/min).

Rys.3. Model symulacyjny układu napędowego z 5-fazowym silnikiem PMSM

Wyniki badań symulacyjnych

Testy symulacje wykonano dla normalnej pracy silników PMSM oraz sytuacji awaryjnych układów napędowych polegających na:

- a) uszkodzeniu jednej fazy zasilania silnika trójfazowego,
- b) uszkodzeniu jednej lub dwóch faz zasilających silnik pięciofazowy.

Badania przeprowadzono dla stałego i zmieniającego się momentu obciążenia. Dla tych warunków pracy obserwowano podstawowe wielkości elektromechaniczne silników.

Na rysunkach 4, 5 i 6 przedstawiono przebiegi czasowe prędkości obrotowych, momentów elektromagnetycznych oraz jednego z prądów fazowych dla poprawnego zasilania układów przy zadanej prędkości obrotowej 1500obr/min i momencie obciążenia 45Nm, 100Nm (t=1.2s) i 200 Nm (t=3,9s). Na kolejnych wykresach (rys. 7÷11) zaprezentowano charakterystyki uzyskane dla przypadku uszkodzenia fazy C (t=4s) silnika trójfazowego oraz awarii

fazy E (t=4s) i fazy D (t=10s) silnika pięciofazowego przy zadanej prędkości obrotowej 1500 obr/min i stałym momencie obciążenia 45Nm.

Rys.5. Charakterystyki czasowe momentu elektromagnetycznego dla napędu z 3-fazowym i 5-fazowym PMSM – praca normalna

Rys.6. Charakterystyki czasowe prądu fazowego (faza A) dla napędu z 3-fazowym PMSM i 5-fazowym PMSM – praca normalna

Rys.7. Charakterystyki czasowe prędkości obrotowej dla napędu z 3-fazowym PMSM (uszkodzenie fazy C) i 5-fazowym PMSM (uszkodzenie fazy E i D)

Rys.8. Charakterystyka czasowa momentu elektromagnetycznego dla napędu z 3-fazowym PMSM – uszkodzenie fazy C

Rys.9. Charakterystyki czasowe prądów fazowych dla napędu z 3-fazowym PMSM – uszkodzenie fazy C

Rys.10. Charakterystyka czasowa momentu elektromagnetycznego dla napędu z 5-fazowym PMSM – uszkodzenie fazy E i D

Rys.11. Charakterystyki czasowe prądów fazowych dla napędu z 5 -fazowym PMSM – uszkodzenie fazy E i D

Rys.13. Charakterystyka czasowa momentu elektromagnetycznego dla napędu z 3-fazowym PMSM – awaria fazy C, wzrost $M_{\rm obc}$

Rys.14. Charakterystyka czasowa prądów fazowych dla napędu z 3-fazowym PMSM – awaria fazy C, wzrost $M_{\rm obc}$

Rys.15. Charakterystyka czasowa momentu elektromagnetycznego dla napędu z 5-fazowym PMSM – awaria fazy E, wzrost $M_{\rm obc}$

Rys.16. Charakterystyka czasowa prądów fazowych dla napędu z 5-fazowym PMSM – awaria fazy E, wzrost $M_{\rm obc}$

Ponadto zasymulowano, jak zachowują się układy jeśli po wystąpieniu uszkodzenia zasilania wzrośnie moment obciążenia (rys. 12÷16). W obu modelach napędów przy awarii jednej fazy silniki obciążono momentem 100Nm (t=4,8s), a następnie $M_{\rm obc}$ podwyższono do 200Nm (t=15,6s).

W przypadku silnika 5-fazowego zarejestrowano również przebiegi prędkości obrotowej, gdy po awarii jednej fazy i wzroście momentu obciążenia z wartości 45Nm do 100Nm (t=4,8s) wystąpiła awaria w drugiej fazie zasilania t=10s (rys. 17a) oraz najbardziej niekorzystny przypadek, jeśli dodatkowo nastąpił jeszcze wzrost $M_{\rm obc}$ do 150 Nm (rys. 17b).

Rys.17. Charakterystyki czasowe prędkości obrotowej dla napędu z 5-fazowym PMSM: a) awaria fazy E (wzrost M_{obc}) i awaria fazy D, b) awaria fazy E (wzrost M_{obc}) i awaria fazy D (wzrost M_{obc})

Uzyskane charakterystyki wskazują, że brak zasilania w jednej fazie silnika 3-fazowego skutkuje spadkiem prędkości obrotowej i jej oscylacjami. Ponadto widoczny jest znaczny wzrost momentu elektromagnetycznego i prądów w pozostałych fazach, zwłaszcza w przypadku zwiększenia obciążenia silnika. W tej sytuacji znacznie lepiej zachowuje się napęd z silnikiem pięciofazowym. Amplituda M_e jest mniejsza i praktycznie występują tylko niewielkie oscylacje prędkości obrotowej do chwili

skompensowania ich przez układ regulacji. Również pomimo uszkodzenia dwóch faz zasilania układ jest w stanie pracy, chociaż można już zaobserwować obniżenie prędkości obrotowej w stosunku do wartości zadanej i jej oscylacje.

Podsumowanie

Badania symulacyjne napędów 7 trójfazowym i pięciofazowym silnikiem PMSM pozwoliły na ocenę pracy układów w przypadku normalnych warunków pracy oraz w sytuacji awarii faz zasilajacych. Korzystniejszym rozwiązaniem jest zastosowanie silnika 5-fazowego, który zapewnia zmniejszenie pulsacji momentu elektromagnetycznego i jest odporniejszy na zakłócenia zasilania. Przy uszkodzeniu jednej, a nawet dwóch faz zapewniał dalszą pracę układu napędowego. Dlatego też wydaje się, że w układach od których wymaga się zwiększonej niezawodności, pomimo wyższych kosztów instalacji, wskazane jest użycie jednostki napędowej z silnikiem wielofazowym.

LITERATURA

- Biała Księga: Plan utworzenia jednolitego europejskiego obszaru transportu - dążenie do osiągnięcia konkurencyjnego i oszczędnego zasobowo systemu transportu, COM (2011) 144, Bruksela
- [2] Dyrektywa Parlamentu Europejskiego i Rady 2009/33/WE z dnia 23 kwietnia 2009r. w sprawie promowania ekologicznie czystych i energooszczędnych pojazdów transportu drogowego
- [3] Ministerstwo Transportu, Budownictwa i gospodarki Morskiej: Strategia rozwoju transportu do 2020 roku (z perspektywą do 2030 roku), (2013), Warszawa
- [4] Chau K.T., Chan C.C., Liu C.: Overview of permanent-magnet brushless drives for electric and hybrid electric vehicles, *IEEE Transactions on Industrial Electronics*, Vol. 55 (2008), No. 6, 2246-2257
- [5] Olesiak K.: An algorithm for tuning a fuzzy controller in a drive control system of a permanent magnet synchronous motor, *Przegląd Elektrotechniczny* (*Electrical Review*), 90 (2014), No. 12, 250-252
- [6] Prauzner, T., Ptak, P.: Analiza parametrów pracy wybranych czujników pola magnetycznego, *Przegląd Elektrotechniczny* (*Electrical Review*), 90 (2014), nr 12, 273-276
- [7] Levi E.: Multiphase Electric Machines for Variable-Speed Applications, *IEEE Transactions on Industrial Electronics*, Vol. 55 (2008) No.5, 1893-1909
- [8] Meinguet F, Nguyen N.-K., Sandulescu P., Kestelyn X., Semail E.: Fault-Tolerant Operation of an Open-End Winding Five-Phase PMSM Drive with Inverter, *IECON 39th Annual Conference of the IEEE Industrial Electronics Society*, (2013)
- [9] Parsa L., Toliyat H.: Five-Phase Permanent Magnet Motor Drives, *IEEE Transactions on Industry Applications*, Vol. 41 (2005), 30–37
- [10] Ruba M., Surdu F., Szabo L.: Study of a Nine-Phase Fault Tolerant Permanent Magnet Starter-Alternator, *Journal of Computer Science and Control Systems*, Vol.4 (2011), No.1, 149-154
- [11]Baudart F., Dehez B., Labrique F., Matagne E.: Control strategy with minimal controller reconfiguration of fault tolerant polyphase PMSM drives under open circuit fault of one phase, *XIX International Conference on Electrical Machines* (ICEM), (2010)
- [12] Krishnan R., Permanent Magnet Synchronous and Brushless DC Motor Drives, CRC Press, (2009)

Autor: dr inż. Beata Jakubiec, Politechnika Częstochowska, Instytut Telekomunikacji i Kompatybilności Elektromagnetycznej, Zakład Energoelektroniki, Robotyki i Jakości Energii, al. Armii Krajowej 17, 42-200 Częstochowa, E-mail: <u>beja@el.pcz.czest.pl</u>