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A numerical-analytical method for magnetic field determination 
in three-phase busbars of rectangular cross section 

 
 

Abstract. A numerical-analytical method for determining the magnetic field distributions in high-current busducts of rectangular busbars is presented 
in this paper. The approach is based on the Partial Element Equivalent Circuit (PEEC) method. The integral equations are solved numerically to 
determine the current density distribution throughout the busbars. Then the values are used in analytical formulas to find the magnetic field around 
the busbars. The method takes into account the skin effect and proximity effects, as well as the complete electromagnetic coupling between phase 
bars and the neutral bar. Two applications to three-phase unshielded systems of busbars are presented. 
 
Streszczenie. W artykule przedstawiono numeryczno-analityczną metodę obliczania pola magnetycznego układów szyn prostokątnych. Metoda 
oparta jest na teorii obwodowych cząstkowych elementów zastępczych. Najpierw rozwiązywane są numerycznie równania całkowe dla gęstości 
prądu w szynach. Następnie otrzymane wartości są wykorzystane w analitycznych wzorach na pole magnetyczne wokół szyn. Metoda uwzględnia 
zjawisko naskórkowości i zbliżenia oraz całkowite sprzężenie magnetyczne miedzy szynoprzewodami. Przedstawiono wyniki obliczeniowe dla 
dwóch układów nieekranowanych trójfazowych szynoprzewodów prostokątnych. (Numeryczno-analityczna metoda obliczania pola 
magnetycznego układu szynoprzewodów prostokątnych) 
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Introduction 

High-current air-insulated bus duct systems with 
rectangular busbars are often used in power generation and 
substation, due to their easy installation and utilization. The 
increasing power level of these plants requires an increase 
in the current-carrying capacity of the distribution lines 
(usually 1-10 kA). The medium voltage level of the 
generator terminals is 10-30 kV. The construction of busbar 
is usually carried out by putting together several flat 
rectangular bars in parallel for each phase in order to 
reduce thermal stresses. The spacing between the bars is 
made equal to their thickness for practical reasons, and this 
leads to skin and proximity effects. The bus ducts usually 
consist of aluminum or copper busbars [1, 2]. A typical 
cross-section of the unshielded three-phase high-current 
bus duct is depicted in Fig. 1. 

 

 
 
 
 
 
 
 
 
 
 

Fig. 1. Three phase high-current bus duct of rectangular cross-
section with two busbars per phase and one neutral busbar 

 
Power busbars generate extremely low frequency 

magnetic field, which can cause disturbances nearby 
computers and some other electrical, electronic and digital 
devices. Power distribution three-phase busbar systems 
belong to the main sources of magnetic field of industrial 
frequency, and can generate electromagnetic interference 
by inductive coupling. Moreover, the presence of a low 
frequency magnetic field generated by power busbars may 
produce some undesirable effects on human health [3-6]. 
Thus, a correct prediction of the magnetic field generated 
by high current bus ducts is very important. 

The distribution of AC magnetic field in the region 
surrounding the busbars can be found exactly for simple 
geometries, only, like round wires and tubes [7], or very 

long and thin rectangular busbars (tapes or strips) [8-10]. 
For more complex cross-sections analytical-numerical and 
numerical methods must be used to find the magnetic field 
distributions, which is further modified by the proximity of 
other conductors – “proximity effect” [4-6, 11-15]. Both the 
skin effect and proximity effect will generally cause the 
magnetic field distribution differs considerably from the 
expected one without taking into account both effects. The 
development of efficient numerical or analytical methods for 
the solutions of these problems is therefore of interest. 

 
Multiconductor model of the busbars 

In this model, each phase, neutral busbars and each 
plate of enclosure is divided in several thin subbars [2, 26-
31], as shown in Fig. 2.  

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. The kth bar of the ith phase divided into Ni,k = Nx
(i,k)Ny

(i,k) subbars 
 
This division of the kth bar of the ith phase or the neutral 

into subbars is carried out separately for the horizontal (Ox 
axis) and vertical (Oy axis) direction of its cross-sectional 
area. Hence, the subbars are generally rectangular in their 
cross-section, with the width Δa and thickness Δb, defined 
by the following relations: 
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phase is Ni,k = Nx
(i,k)Ny

(i,k), and they are numbered by m = 1, 2, 
…, Ni,k. For the lth bar of the jth phase or the neutral we have 
the total number of subbars Nj,l = Nx

(j,l)Ny
(j,l) numbered by n = 

1, 2, …, Nj,l. All subbars have the same length l. 
If the area Si

(m
,k

) = Δa·Δb of the mth subbar is very small 
and the diagonal [(Δa)2+(Δb)2]1/2 of it is not greater than skin 
depth, we can neglect the skin effect and assume that the 
complex current density can be considered uniform 
throughout the subbar, i.e. 
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where I i
(m
,k

) is the complex current flowing through the mth 

subbar. 
 

Current densities 
For the mth subbar the integral equation can be written 

as follows [16] 
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where vj
(n
,l

) is the volume of the nth subbar or plate of the lth 

bar or plate of the jth phase or the neutral or the enclosure, 
and ρXY = |X – Y| is the distance between the observation 
point X = (x1, y1, z1) and the source point Y = (x2, y2, z2). 

Now, we can divide Eq. (3) by the area Si
(m
,k

) and 
integrate over the volume vi

(m
,k

) of the mth subbar or plate, 
obtaining the following equation: 
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where Ui is the voltage drop across of all subbars of the ith 

phase or the neutral or the shield (they are connected in 
parallel), and the resistance of the mth subbar is defined by 
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and the self or the mutual inductance is expressed as 
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The exact closed formulae for the self and the mutual 
inductance of rectangular conductor of any dimensions, 
including any length, are given in [18] and [19] respectively. 
Not only do not we use the geometric mean distance here, 
we do not use the formula for mutual inductance between 
two filament wires as well. 

The set of equations like as (4), written for all subbars, 
forms the following general system of complex linear 
algebraic equations 

(7) IZU ˆˆˆ  , 

where Û  and Î  are column vectors of the voltages and 

currents of all subbars, respectively, and Ẑ  is the 
symmetric matrix of self and mutual impedances (the 
impedance matrix) of all subbars, the elements of which are 
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Then, we can find the admittance matrix Ŷ , which is the 

inverse matrix of the impedance matrix Ẑ , and it is 
expressed as 
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and has a similar structure as Ẑ . Then it is possible to 
determine the current of the mth subbar of the kth bar of the 
ith phase or the neutral as 
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The total current of the ith phase or the neutral is 

(11)  
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By inserting Eq. (10) into Eq. (11), we obtain 
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From the admittance matrix with elements given by Eq. 
(13), we can determine the impedance matrix of a three-
phase system busbars with or without the neutral busbar an 
the enclosure as follows 
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Since each Zi,j is obtained from a matrix whose elements 
are comprised of information related only to construction 
and material, its value is not affected by the busbar current. 
In spite of that the skin and proximity effects are taken into 
consideration. 

If we assume all sinusoidal phase currents to be given, 
we can write that the neutral current IN = I1 + I2 + I3 and, 
from Eq. (12), find all voltages across phase and neutral 
busbars as follows: 
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Thus, from that and Eq. (12) it is possible to determine all 
currents in subbars, and finally calculate, according to Eq. 
(2), current densities in them.  

 
Magnetic field 

Knowing the currents in each subbar – Eq. (10), the 
evaluation of the magnetic field can be performed. The 
vector magnetic potential Ai

(m
,k

)(X) induced by the mth subbar 
(Fig. 3) is given by 
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where X = (x, y, z), Y = (x1, y1, z1), and ρXY = |X − Y|. 
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Fig. 3. The mth subbar of the kth bar of the ith phase with the current 
I i

(m
,k

)
 which generates the vector magnetic potential A i

(m
,k

) at point X 
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Hence, the complex magnetic field strength has two 
components, only, which are given by 

(19) 
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and 
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The integrals in Eqs. (19) and (19a) are the standard 
integrals whose solutions are known. Let us denote 
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for ξ = z − z1. Thus, assuming l0 = 0, the components of the 
magnetic field can be rewritten as
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The total magnetic field is given by 

(22)   
  


c i kiN

i

N

k

N

m

m
kixx XHXH

1 1 1

)(
,,

,

)()( , 

and 

(22a)   
  


c i kiN

i

N

k

N

m

m
kiyy XHXH

1 1 1

)(
,,

,

)()( . 

In three-phase busbar systems, the magnetic field is 
elliptical. Its instantaneous value equals 
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and its major and minor RMS values, respectively, can be 
found as follows: 
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Numerical examples 
The first numerical example selected for this paper 

features a three-phase system of rectangular busbars with 
one neutral busbar, whose cross-section is depicted in 
Fig.1. According to the notations applied in this figure, the 
following geometry of the busbars has been selected: the 
dimensions of the phase rectangular busbars and the 
neutral busbars are a = 60 mm, b = b1 = 5 mm, 
d = d1 = 90 mm. The phase busbars and the neutral are 
made of copper, which has the electric conductivity of 
σ = 56 MS·m−1. The frequency is 50 Hz. All phases have 
two busbars per phase − N1 = N2 = N3 = 2, and the neutral 
has one busbar − N4 = 1. The length of the busbar system is 
assumed to be l = 10 m. In the numerical procedure, each 
phase busbar is divided into Nx

(i,k) = 30 and Ny
(i,k) = 5, which 

gives 150 subbars for each busbar. Hence, all three phases 
and the neutral busbars have 1050 subbars in total. With 
the chosen division, each rectangular subbar has 
dimensions of 2 × 1 mm. This allows for the fact that the 
current density is uniform on the surface of the subbars. 
During the simulation, three balanced currents with busbar-
rated values I1 = 1 kA are imposed in phases as shown 
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As a first result, the current density comparison along x 
axis, practically the same along y axis at x = const, in each 
busbar is shown in Fig. 4. 
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Fig. 4. Magnetic field Hmax (RMS value) against x at different heights 
in the high-current three-phase busducts with two busbars per 
phase and one neutral bar in the case of three balanced currents 
(a1 = 35 mm, b2 = 45 mm - see Fig. 1) 

 

The case of three unbalanced currents 
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has been also investigated – Fig. 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Magnetic field Hmax (RMS value) against x at different heights 
in the high-current three-phase busducts with two busbars per 
phase and one neutral bar in the case of three unbalanced currents 
(a1 = 35 mm, b2 = 45 mm - see Fig. 1) 

 
 
 
 
 
 
 
 
 

Fig. 6. Three phase high-current bus duct of rectangular cross-
section with one busbar per phase and one neutral busbar 
 

The second configuration of a three phase busbar 
system, the current density of which are investigated, is 
shown in Fig. 6. It has only one busbar per phase and 
neutral - N1 = N2 = N3 = N4 = 1. The length of the busbar 
system and the busbar division are as in the previous 
example (150 subbars for each busbar). Hence, all three 
phase and the neutral busbars have 600 total subbars. With 
the chosen division, each rectangular subbar has still 

dimensions of 2 × 1 mm. During the simulation, three 
balanced – Eq. (25) − and three unbalanced – Eq. (26) − 
currents with busbar-rated values Ieff = 1 kA are imposed in 
phases, and the current densities comparison along x axis, 
practically the same along y axis at x = const., in each 
busbar are shown in Fig. 7 and Fig. 8, respectively. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Magnetic field Hmax (RMS value) against x at different heights 
in the high-current three-phase busducts with one busbar per 
phase and one neutral bar in the case of three balanced currents 
(a1 = 35 mm, b2 = 45 mm - see Fig. 6) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Magnetic field Hmax (RMS value) against x at different heights 
in the high-current three-phase busducts with one busbar per 
phase and one neutral bar in the case of three unbalanced currents 
(a1 = 35 mm, b2 = 45 mm - see Fig. 6) 
 
Conclusions 

A novel approach to the solution of the magnetic field  
distribution in the high-current bus ducts of rectangular 
cross-section has been presented in this paper. The 
proposed approach combines the Partial Element 
Equivalent Circuit (PEEC) method with the exact closed 
formulae for AC self and mutual inductances of rectangular 
conductors of any dimensions, which allows the precise 
accounting for the skin and proximity effects. Complete 
electromagnetic coupling between the phase busbars and 
the neutral busbar is taken into account as well.  

Figures 4 and 5 as well as 7 and 8 show that both the 
skin effect and proximity effect will generally cause the 
magnetic field distribution differs considerably from the 
expected one without taking into account both effects, 
especially very near the busbars. Knowing the magnetic 
field and current distribution, the evaluation of the 
electrodynamic force on each busbar can be performed.  
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The proposed method allows us to calculate the 
magnetic field intensity distribution in a set of parallel 
rectangular busbars of any dimensions including any length. 
The model is strikingly simple, and from a logical stand-
point can be applied in general to conductors of any cross-
section, whereas many conventional methods, being much 
more complicated, often require a greater or lesser degree 
of symmetry. From the practical stand-point of the 
calculations involved, the model requires the solution of a 
rather large set of linear simultaneous equations. However, 
this solution is well within the range of the ability of existing 
computers, even those slightly overage.  
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