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Fast computation of the SLTF transform  
 
 

Abstract. The paper presents computation process of the fast SLTF transform that use matrix-vector algebra. Examples explaining the course of the 
calculations both analysis and synthesis transform, are also illustrated by the graph-structural models that helps to understand the algorithm 
principle. Additionally, an improved calculation procedure reducing redundant data redirection was proposed. 
 
Streszczenie. W pracy przedstawiono proces obliczania szybkiej transformaty SLTF z wykorzystaniem operacji wektorowo-macierzowych. 
Przykłady objaśniające przebieg obliczeń zarówno transformaty prostej jak i odwrotnej zilustrowano grafami ułatwiającymi zrozumienie zasady 
działania algorytmu. Dodatkowo zaproponowano ulepszoną procedurę obliczeniową redukującą nadmiarowe przeadresowania danych. Proces 
obliczania szybkiej transformaty SLTF z wykorzystaniem operacji wektorowo-macierzowych 
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Introduction 
 Progress in the field of Digital Signal Processing 
requires using more and more advanced mathematical 
methods to achieve complex tasks. SLTF Transform due to 
its unique properties is the subject of interest in many 
areas. It has already found application in chemical and 
biomedical studies [1-4]. 
 In case of stationary signals analysis, good results can 
be achieved by obtaining the spectral form with the Fourier 
transform [5]. In the case of non-stationary signals, time-
frequency analysis, that gives better results for this 
purpose, is desirable [6]. This kind of analysis is provided 
by a short-time Fourier transform STFT [7, 8] and a Gabor 
transform [9-11]. In case of STFT transform with sliding 
window, the window width remains constant. S transform 
[12-15], that is an extension of STFT transform and Wavelet 
transforms, introduces a variable width of Gaussian 
window, dependent on frequency with adjustable resolution 
in the time or frequency domain. Gabor transform, that is a 
special case of the STFT transform, where window in the 
time domain has a Gaussian shape, provides optimal 
localization in the field of time-frequency domain. 
 Presented by the Osama A. Ahmed, SLTF ("Stable 
Linear Time-Frequency") Transform [1], similar to the 
transforms presented above, allows time-frequency 
analyze. The same as the Gabor transform, it has optimal 
localization in a time-frequency domain, but in addition it 
also guarantees the stabilization and localization of both the 
window and its bio-orthogonal functions.  

The purpose of this paper is to introduce an improved 
calculation procedure and analyze the specific examples 
that are illustrating the principle of operations and rapid 
technique for SLTF transform calculation, visualized by the 
graphs. 

SLTF transform definition 
 The SLFT transform is defined for a finite discrete 
signals x(k) , where 0 ≤ k <K and K = M N is the length of the 
signal and the parameters M, N are the number of samples 
in time and frequency. Analysis transform is given by the 
formula: 
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for 11  M,m  and 11  N,n .   
Synthesis transform can be described as:  
 

.
N

.n.k
csinkhakx

M

m

N

n
mn,m 












1

0

1

0

)50)(50(
)()(


 

Elements am,n are the SLTF transform coefficients. 
Function csin(x) and hm(k) are defined as: 
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hm(k) is in this case the normalized Gaussian window, 
shifted to the center of the mth window with δ controlling the 
window width. γm(k) = γm(k-mN) is a bio-orthogonal function 
to h(k), which means, that the following condition is meet: 
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Fast SLTF transform calculation 
 Nuances of the SLTF transform calculation in the 
existing studies have not been adequately disclosed. 
Additionally the computational procedure can be improved, 
namely permutations of the elements in the input and output 
are executed twice. It turns out that if the computations are 
performed exactly at is described in the paper [1], 
perceptible time investments are required. To simplify the 
notation and to reduce redundant steps, that in this case 
lead to additional redirection of data during the calculation 
process, additional notation is introduced:  
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and  
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The whole calculation process of the analysis transform 
can be presented by matrix-vector algebra as follows: 
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Similarly to the analysis transform, inverse transform can be 
described as:  
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Matrices that are components of the formulas (1) and (2) 
are of the following form: 
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where    is the integer part of  . JN is a rows exchange 

matrix defined as follows:  
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 EK is a block-diagonal matrix with the matrices that 
represents N-point DCT-IV and DST-IV on the diagonal, 
arranged in the following manner:  
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CN  is a matrix of the N-point DCT-IV transform: 
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SN  is a matrix of the N-point DST-IV transform: 
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matrices. Such a matrix can be represented by the coding 
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where l=k mod 2, 
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Each of the elements )2(
2/ME  is the M/2-point Discrete 

Fourier Transform represented as the: 
 

.e
/M

e /M

nki

k,m
2

2

2

1



  
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m,nB  of the dimension 2×2 are formed 

according to the formula:  
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for 120  /M,m , 10  N,n , nNn  11 . 
 

 Inverse matrices 1)(
2 )( m,nB  of the dimension 2×2 can 

be calculated directly based on the dependency: 
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Fast SLTF transform example 
 In this section we will show the example of the SLTF 
transform calculation process. 
 Let N=M=4. Then K=16. 
 Procedure for the SLTF analysis transforms, described 
by the formula (1) for the M=4, N=4 takes the form: 
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 The 
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Discrete Fourier Transform matrices  
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 Inverse matrices 1)(
2 )( m,nB  are made by applying the 

scheme (2) for the 
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m,nB  matrices. This gives the matrices 

of the form: 
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for 30,n  , 10,m  .  
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 Matrices C4 and S4 symbolize 4-point DCT-IV and  

DST-IV transforms matrices. 
 The graph-structural model representing calculation 
process for SLTF analysis transform is shown in Figure 1. 
Graf is oriented from left to right. The straight lines 
represent data transfer channels. 
 Similar as in case of analysis transform, the procedure 
for computing inverse transform (2) for M=4, N=4 can also 
be described as a matrix product: 
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The graph-structural model showing the inverse transform 
calculation procedure is presented in Figure 2.  
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. The graph-structural model of calculation process for the SLTF analysis transform for N=M=4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2. The graph-structural model of calculation process for the SLTF inverse transform for N=M=4. 
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Summary 
 In this paper calculation process of the fast algorithm for 
the SLTF transform was presented. The procedure requires 
calculation of: 

 M times N-point DCT-IV or DST-IV transform, 
 2N times M/2-point FFT transform, 
 2N times M/2-point inverse FFT transform, 

 NM/2 multiplications by the 1)(
2 )( j,iB  or 

)(
2

j,iB  

matrix of the dimension 2×2. 
Therefore to calculate analysis or synthesis transform 
K(log2K - 0,5·log2N) multiplications and K(2log2K - log2N - 3) 
additions are required. Procedure presented in this paper 
rationalize the number of data permutations by removing 
redundant steps during the calculation of the matrix GK  and 

1
KG . Improved procedure removes two of data 

permutations of the vector with length K.  Graph-structural 
models of the SLTF analysis and synthesis transforms for 
N=M=4 can be generalized to any dimension. 
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