
PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 2/2015 63

Krzysztof CABAJ, Piotr GAWKOWSKI

Warsaw University of Technology

doi:10.15199/48.2015.02.16

HoneyPot systems in practice

Abstract. The paper presents the HoneyPot technology as well as the experience gained from their usage in the network of the Institute of
Computer Science Warsaw University of Technology. On this background the concept of HoneyPot systems is presented and discussed. The paper
is illustrated with the real-life cases of some recent vulnerabilities observed on our HoneyPots.

Streszczenie. Praca przedstawia technologię systemów HoneyPot oraz doświadczenia zebrane z ich użycia w sieci Instytutu Informatyki
Politechniki Warszawskiej. Na tym tle zaprezentowano i omówiono koncepcję systemów HoneyPot oraz prawdziwe przypadki najnowszych
zagrożeń zaobserwowane na naszych systemach HoneyPot. (Systemy HoneyPot w praktyce).

Keywords: Network Security, HoneyPot systems, Network Attacks, Exploits.
Słowa kluczowe: bezpieczeństwo sieci, systemy HoneyPot, ataki sieciowe, exploity.

Introduction

Security of information is one of the most important
issues in the IT systems nowadays. The growing number of
devices connected to the Internet pushed forward the
necessity of secure communication and data storage.
Internet of Things, Bring Your Own Device (BYOD),
Intelligent Cars and Houses, Systems of Systems, Cloud-
based solutions are no longer scientific nor marketing
concepts but a reality – reality introducing new challenges
for security and personal privacy.

The undisputable advantage of using cloud solutions is
high availability of the users’ data from any location on any
device. It is however depended on the Internet connectivity.
Fortunately, the high speed broadband is more and more
popular [1]. Despite of the user privacy concerns related to
the storage of data on third party servers, collection of such
information like mobile device locations (e.g. Android
devices) or web pages viewed by the user for
advertisement, the big problem is the security of network-
based applications and the network itself. That brings us to
the problems of dependable networking.

Several types of threats can be pointed out in the
mentioned above context. One of this is related with the
confidentiality of the communication channels (e.g.
robustness of routers in public Wi-Fi installations). In [2] it is
showed that single-bit faults can lead to major security
issues. However, the most of the problems are related to
the quality of software. It may contain (or rather contains)
some yet-undiscovered bugs that can be exploited, in the
security field called vulnerabilities. This can be done
through malicious documents sent by e-mail, accessing the
infected web page or direct attack on the services served
over the network (e.g. remote code injection through
malicious network request). In this last scenario the
infection does not require user actions on the affected
machine to activate malicious code. Thus, it is more
dangerous as without the proper system monitoring the
infection could be undiscovered for long time. System user
might be unaware of the problems. Here arises the problem
of abnormal system behaviour – how to recognise any
anomalies from normal operation [3].

Invaluable data upon security threats in the network can
be extracted from the HoneyPot systems [4, 5]. In this
paper we present some of our experience from over two
years of several HoneyPot systems usage within our
university network. In the next section we describe the main
concepts of HoneyPots as well as some important aspects
of their usage. The following sections introduce our
HoneyPot systems in the context of the gained experience
and observed intrusion attempts.

Network security threats
Typical remote attacks exploiting vulnerability start with

the recon phase – vulnerable machines directly connected
to the Internet are sought. This process could be performed
in advance due to massive scanning of large ranges of IP
addresses or just before the attack. Currently, access to the
services like Shodan [6], which sequentially scans all
machines connected to the Internet and records all enabled
services and used software versions significantly ease this
process. When potential victim is found the attacker sends
so called exploit. The exploit is specially crafted packet,
communication session or user data that using a bug (or
imperfection) in software performs some actions, not
intended by a programmer. Two most popular ways of
attacks are remote code execution and command injection.
In the first case a bug allows the attacker to execute
provided machine code. This can be done for example by
buffer overflow vulnerability (leading to overwritten return
address). The other kind of software errors allows direct
execution of OS commands. In both cases the attacker’s
code or commands are very limited. In effect, this code is
called “a first stage”, and used only for downloading and
execution of larger, main malicious software used by the
attacker.

One of the main problems of Internet security is the
number of new, so far unknown threats due to existing
security holes in the software – called “zero day threats”. At
the beginning there is no knowledge upon actions taken by
the attacker. Following and understanding these actions
and mechanisms behind them allow identifying software
bugs that lead to the successful attack. It probably will also
show the potential scope of damage made by the exploit
and malicious software on the compromised systems.
Moreover, it can help to identify the other web resources
engaged in spreading the malicious software over the
Internet. Nowadays most of the security systems, for
example, antivirus systems or intrusion detection systems,
detect malicious activity using databases of know patterns
that describes malicious activity. Due to this fact,
appearance of “zero day threat” cause that all users of
vulnerable software are effectively not protected unless new
patterns are produced by security companies and
downloaded by users.

In order to prevent the malicious code from spreading
across the network several steps have to be taken:
 discovery of the new threat existence;
 identification of mechanisms of compromising the target;
 assessing disaster made in the overtaken systems and

further actions taken by the malicious code;
 recovery of compromised systems;

64 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 2/2015

 development of security paths;
 deployment of security paths.

In the timeline, two of these steps takes most of the
time: discovery of the new threats and securing the
vulnerable systems. In case of (one of the latest)
Heartbleed vulnerability of the OpenSSL implementation it
is reported that the security hole was present for almost two
years before officially announced. Some companies were
informed about the vulnerability earlier [7]. Another issue is
how fast the vulnerable software is updated by system
administrators. Even if the OpenSSL implantation was fixed
before the official announcement (which was at the 7th of
April 2014), it is apprised that more than 300 thousands
systems is still (as for June 23) vulnerable to Heartbleed
attacks [8]. So, the life-cycle of malicious software and
vulnerable systems is quite similar to epidemic behaviour –
threats can spread unnoticed and last quite long after
identification and availability of fixed version of vulnerable
software. In this sense there are works towards modelling of
this life-cycle [9]. There is also a threat that after some time
after the bug fix, when the vulnerability is slowly forgotten in
the community, some new installations of old vulnerable
software versions can take place.

HoneyPots concept

Hackers are almost always first to be aware of some
vulnerabilities, so, it is crucial to identify somehow their
activities. Here the HoneyPot systems are handy. The key
role of the HoneyPot can be performed by any resource that
can be used for observing hostile or unexpected activity.
The only common feature of this resource is that it is not
used for production purposes. The HoneyPot is mostly
specialized machine or software; however, in this role a
fake record in the data base can be used or a fake account
in the important computer system. Any access to the
resource, for example, an attempt to read or login, is a sign
of unexpected activity. A good survey on HoneyPots can be
found in [5]. In the [10] details concerning one of the first
well documented development of the HoneyPot and
description of further monitoring and tracing real attacker
can be found.

The suspicious activity starts with connection performed
to the HoneyPot system. In effect, the HoneyPot responds
with appropriate response that in most cases contains
details concerning the used software (name and version).
This information is specially crafted to entice as many
attackers as possible presenting older (vulnerable)
versions. In some cases, in this step the exchange of
messages stops. This can be caused by a few facts: this is
harmless connection due to erroneous usage of HoneyPot
address instead of the real destination address, presented
version of the software is not vulnerable to the given
attacker or the attacker performs only recon activity and
maybe he will be back later. If following messages are
observed then it is a sign that with high probability the
attacker tries to use the detected vulnerability and sends an
exploit (see the previous section). In case of successful
vulnerability exploitation the victim downloads larger
primary malware.

We can distinguish two kinds of HoneyPot systems: high
and low interaction ones. The first one provides a fully
operable version of the target system enriched with
monitoring functions. This solution was ideal for caching
and tracking a human attacker. However, in the era of
automatic threats, like worms, e-mail viruses or auto-
rooters, dedicated high interaction HoneyPots systems
used for gathering of copies of malicious code are not
efficient and very risky. If the attacker detects and disables
all monitoring mechanisms, the HoneyPot can be used for

other hostile activity. Additionally, after each infection, the
HoneyPot system must be cleaned. The initial deployment
or cleaning the HoneyPot after a successful attack is very
labour intensive. This process, even with the support of
virtualization, is relatively slow. In this context, a better
solution for gathering information related with malware is
usage of low interaction HoneyPots. They are dedicated
software that imitates vulnerable services. Depending on
purpose, it can be very simple (e.g. only listing for incoming
connections and returning standard banners of simulated
service) or very complicated system dedicated to
downloading new samples of malware. This kind of low
interaction HoneyPot simulates high level protocols in which
vulnerabilities appear, emulates incoming shellcode used
by worms during vulnerability exploitation and downloads
next stages of the malware. The most important low
interaction HoneyPots are HoneyD [4], Nepenthes [11] and
its successor Dionaea [12].

HoneyPot systems can gather detailed information
concerning attacker’s IP address, used attack technique
and even executable code that attacker want to execute on
victims machine. The HoneyPot configuration enables
various monitoring mechanisms that during attacks gather
as many as possible data concerning the attacker’s activity.
For this purpose the logs from operating systems, network
devices placed between the HoneyPot and Internet or even
traces of all the traffic directed to it can be used.

In typical attack two stages can be distinguished: code
injection and then malware installation on the compromised
system. Analysing an attack the one can have two different
goals related to these two stages of attack. The problem is
with the amount of data for the analysis and differences in
the types of information related with these two stages (i.e. a
set of network packets and connections data against a
dynamic model of malware execution). So, different
methods and tools are needed for both stages of attack. As
a result it is not sufficient (nor practical) to set only one
HoneyPot system in the organization network. We faced
this problem in practice. To identify potential threats we use
low-interaction HoneyPots collecting all connections data.
Based on the analysis (e.g. data mining, clustering and
classification) and trend analysis some specialized
HoneyPot systems are developed and setup to catch the
exploits’ code and the malware (presented in further
sections). Then, a separated system emulates the
behaviour of the collected malware to analyse its execution.

Another problem is related to the attractiveness of the
HoneyPot to the attacker (no matter if it is a human or a
bot). The more interesting target system is, the faster the
attack will occur. That principle has been proven in our
practice – examples are given in the further sections. The
HoneyPot is not production system and naturally delivers
only limited service for the attacker (e.g. emulates only the
vulnerable parts of a service). This leads to an efficient and
effective solution. However, if the provided service is too
simple the attacker will not be attracted to exploit the
system. At the other side, if the HoneyPot provides
unnaturally rich set of vulnerable services (i.e. the old
ones), the attacker can assume that it is not a true
production system but a HoneyPot. So, it is important to
provide the dedicated services only if there is observable
interest from the attackers to assure the creditability of the
HoneyPot. Here the implementation details are also
important. For instance, in [13] the authors pointed that
high-interaction honeypots implemented on virtual
machines have less success in identifying websites that
host malware in drive-by-download attacks if malware is
able to detect VM implementations of honeypots.

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 2/2015 65

In [14] authors proposed a framework to dynamically
enable HoneyPots for interesting services. In the presented
system only network activity was monitored and using this
information new HoneyPots were deployed. In our research
we enhanced this idea using simpler HoneyPots for
gathering initial data. The analysis shows then what new
HoneyPots should be later deployed. Nowadays, with many
attacks directed to various Web applications, simply
enabling a web server is not efficient. For attracting the
attackers, some more complicated systems (e.g. with
advanced web applications) must be deployed. In the
network of our Institute we use a few types of HoneyPots.
The simplest one is based on well-known open source
Dionaea low interaction HoneyPot. The second type of
HoneyPot is custom made WebHP system, devoted to the
http protocol. Additionally, after analysis of the requested
URLs some specialized applications, monitored by the own
developed WebHP systems are manually enabled.
Unfortunately, due to the complicated analysis, which finds
vulnerable applications using the observed requests, fully
automatic HoneyPot deployment is almost impossible, so,
we use so far only manual deployment. To summarize,
currently, in the network of the Institute of Computer
Science we have deployed the following HoneyPots and
analytical systems: Dionaea, WebHP, HPMS and
HeartBleedHP. Except the Dionaea, they all are designed
and developed in our Institute. In the following sections we
present these systems with some practical cases.

Dionaea

The Dionaea low interaction HoneyPot is successor of
the Nepenthes system. Its main purpose was easy
gathering of worm samples, especially those directed to the
Microsoft Windows. So, it implements full Windows remote
procedure call (RPC) stack used for example by DCOM and
various Windows network services. Additionally, system can
simulate other services, for example, telnet, ftp, http and
https. For analysis purpose and exploit detection in
suspicious messages for x86 processor shellcodes a libemu
library can be used. Dionaea system can download
malicious code using various protocols, for example, ftp, tftp
and http. All data concerning activity of the systems are
stored in Postgress database. Easy access to data is
provided by additional Web panel called carniwwwhore [15].
The main drawback of the Dionaea is poor emulation of http
service. So, we developed some dedicated HoneyPots
described later on.

Using the Dionaea the one can identify new attempts of
attacks. For instance, we identified the first connections
related to the most recent Supermicro IPMI implementation
bug [16] in advance for one and a half months before the
official bug announcement (19th of June 2014). We noticed
the first connection to the 49152 port at 29th of April 2014.
Before that date there were neither connections to this port
nor any ports from the neighbourhood. Then, no
connections were observed during the whole May. In June,
before the bug announcement, there was only 5
connections but after the announcement over ten days we
noticed 16 attempts.

WebHP and HPMS

WebHP was developed due to limited Dionaea
capabilities associated with gathering details on data
exchange in application layer between the attacker and the
HoneyPot system, especially using HTTP protocol. To
address the problem of the analysis of the gathered data we
also developed HPMS (HoneyPot Management System).
Analysing the data is a serious problem when we have in
mind the amounts of data that can be gathered by

HoneyNets – installations in which hundreds or even
thousands of HoneyPot systems can be deployed. Known
web consoles for HoneyPots, for example Carniwwwhore
[15] and DionaeaFR [17], show only sample stats, graphs
and plots. These systems do not allow performing any
analysis on gathered data. Contrary, the main aim of HPMS
system is associated with performing analysis and
presenting the results to the user. For this purpose HPMS
system uses data mining algorithms, frequent sets analysis
in particular [18]. In effect, system shows not only all
connections but some patterns that group many
connections sharing similar features. For example, when an
attacker requests a given URL multiple times, the system
detects and shows only one pattern. More details
concerning analytic features of HPMS system are
presented in [19].

WebHP was developed as specialized data capture
script implemented in PHP language. It must be placed in
each monitored page of prepared Web HoneyPot static
pages or an application. It is responsible for logging all
requests sent from the attacker to the data base used by
HPMS management system. Additionally, in the
implemented Web HoneyPot a custom error page was
prepared, which included data logging script, too. This
allows capturing any requests, even if the requested page is
not present in the Web HoneyPot.

The HPMS system was implemented in Python
language using Django framework. It allows easy access to
all the data captured by Web HoneyPot, for example,
searching for interesting requests and plotting activity in
given time frame. Moreover, the user can define rules,
which automatically tag all the requests matching certain
conditions [19].

Below a detailed description of a sample attack directed
to the Web server that hosts PHP My Admin (PMA)
application simulated by our WebHP HoneyPot is
presented. The first attacker’s request looks like innocent
attempt to gather the file /phpmyadmin/scripts/setup.php
(see Fig. 1). The file name is little strange, but the Web
server responds with appropriate data. What is important to
the attacker, the returned file contains unique session token
that is later used during the injection attack.

GET /phpmyadmin/scripts/setup.php HTTP/1.1
Host: 194.29.XX.YY
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; MSIE 5.5;
Windows NT 5.1) Opera 7.01 [en]

HTTP/1.1 200 OK
Date: Thu, 19 Jun 2014 08:51:35 GMT
Transfer-Encoding: chunked
Content-Type: text/html

24a7
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"><head>
. . .
href="http:///app/phpMyAdmin/setup/index.php?version_chec
k=1&token=a60b82c06fa123c868288b29584d345">Check for
latest version
. . .

Fig. 1. Initial message and response during the attack to the PMA
application gathered by WebHP system.

The second message that is sent from the attacker to

the victim contains an exploit. In this case the attacker
utilizes code injection error in PMA application that allows
remote change of configuration object. In effect the attacker
can download and execute on the target machine any
malicious code. Message containing the exploit, which was
sent to the HoneyPot is presented in the figure 2.

66 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 2/2015

POST /phpmyadmin/scripts/setup.php HTTP/1.1
Host: 194.29.XX.YY
Referer: http://194.29.XX.YY/phpmyadmin/scripts/setup.php

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; MSIE 5.5;
Windows NT 5.1) Opera 7.01 [en]
Content-Type: application/x-www-form-urlencoded
Content-Length: 238

action=lay_navigation&eoltype=unix&token=a60b82c06fa123c8
68288b29584d345&configuration=a%3A1%3A%7Bi%3A0%3BO%3A10%3
A%22PMA%5FConfig%22%3A1%3A%7Bs%3A6%3A%22source%22%3Bs%3A2
9%3A%22ftp%3A%2F%2F37%2E59%2EAA%2EBB%2Fpub%2F124%2Ephp%22
%3B%7D%7D

Fig. 2. Message containing an exploit used during the attack to the
PMA application gathered by WebHP system.

The first marked in grey part of the message is the
session token gathered already in the initial phase of the
attack. The second marked part (after decoding) contains
the following text:
“a:1:{i:0;O:10:"PMA_Config":1:{s:6:"source";s:29:
"ftp://37.59.AA.BB/pub/124.php";}}”

This text contains specially crafted PMA software
configuration object which due to an error in the application
can be remotely changed. In effect, vulnerable software
injects in the currently executed instructions the code
downloaded from provided malicious URL – file 124.php
from IP 37.59.AA.BB. Because this exploit is sent to the low
interaction HoneyPot, this attempt was only stored in the
data base and malicious code did not execute. However,
later manual analysis proved that the file 124.php contains
malicious code that is used to remotely control infected
machine and create a BotNet.

Presented in this real-life example data are gathered
from communication exchange observed by the developed
in the Institute of Computer Science WebHP system. The
information stored in the data base concerns attackers’ IP
addresses and used URLs almost uniquely identifies
vulnerable application and exploit code. In most cases this
exploit code contains IP address and file names associated
with the malware to be downloaded.

In currently deployed installation of WebHP HoneyPot it
runs on three distinct IP addresses. Web pages with logging
script are executed in various configurations, using four
distinct ports numbers: 80, 8080, 443 and 5000.
Additionally, various applications are provided, for example:
simple “in construction” page, a guest book and PHP My
Admin application. New ports and applications are
constantly added to study new malicious activities. For
example, port 5000 was added after observing a huge rise
of activity in this port by Dionaea HoneyPot deployed in the
network earlier. It is related to the bug in Synology NAS
vulnerability [20] (presented in further section).

HeartBleedHP
The HeartBleedHP is the most recently deployed

HoneyPot system. It is aimed on answering the question if
anyone interacts with OpenSSL HeartBleed bug (CVE-
2014-0160) [7]. This HoneyPot provides a simple page by
HTTPS protocol. Moreover, this page is integrated with
WebHP script, thus all requests to this page are
intercepted. HeartBleedHP is developed using Apache web
server and specially modified OpenSSL library which
enables HTTPS protocol. Implemented additional
functionality adds full logging to the vulnerable
implementation of HeartBeat message [21]. In effect this
installation intercepts all requests which utilize this rarely
used message. Moreover, all data transmitted by the
attacker and provided to him by the server are stored too.
Figure 3 presents sample log produced by HeartBleedHP.

Data: Wed Apr 30 22:56:07 2014
RREC_length:60
Payload_length:79
..Oheartbleed.filippo.io YELLOW SUBMARINE
194.29.XX.YYY:443.¸ŢÂ. "-.Ţ
ýŠčŢD!.7ÄŐ8+4,.¸Ňő @Ę.őg.U1

Fig. 3. Sample log concerning HeartBeat massages.

This HeartBeat message logged on HeartBleedHP
system originates from the vulnerability scanner. First three
lines are added by implemented modification and contain
respectively date and time of the event, received, requested
by the attacker and transmitted data lengths. Later, the
exact data sent to the requester is presented. As can be
seen, the attacker received 19 additional bytes of HoneyPot
memory (the difference between declared and real payload
length: 79-60). For more than a month of HeartBleedHP
deployment we observed more hostile activity. The
HeartBleedHP was deployed at 26th of April. The first
connection was noticed next day after the deployment. Till
26th of June 8 connections from 4 different addresses were
logged. The most aggressive attacker requested the
maximal allowable size of 16 KiB and did such request
eleven times. That means that the attacker downloaded
160KiB of internal OpenSSL data.

Synology NAS case
HoneyPot systems can point out protocols and

applications that are currently very interesting for attackers.
This fact is with high probability a sign that some exploitable
vulnerability was discovered. Monitoring deployed
HoneyPot systems allows detection of such situation.
Figure 4 presents the activity observed by our Dionaea
instance concerning port 5000. As can be easily seen at the
beginning of March 2014 we recorded huge number of
connection attempts to this port. What is interesting, in the
whole 2013 year HoneyPot observed only 21 such events.

Fig. 4. Activity observed by Dionaea HoneyPot concerning port
5000 daily activity, at the beginning of 2014. Plot from
Carniwwwhore web panel.

The rise in the number of observed events and some
rumours that activity is associated with HTTP protocol
encourage us to deploy WebHP using this port, which
initially was deployed at the beginning of April. Just after the
deployment first appropriate HTTP requests were recorded.
From April to middle of June more than 500 connections
were observed. All the requests belong to two classes
associated with URL /webman/info.cgi and
/webman/imageSelector.cgi. The first URL uses HTTP
protocol’s GET method, which probably is a sign of
searching for vulnerable machines. The second URL uses
POST method and exploits vulnerability in
imageSelector.cgi script. As presented in the Figure 5, the
vulnerable script has a bug that allows execution of
commands provided by the attacker. This kind of activity is
commonly known as command injection attack. In the

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 2/2015 67

presented figure commands sent by the attacker in the
exploit are marked in grey.

 --shit_its_the_feds Content-Disposition: form-data;
name="source" login --shit_its_the_feds Content-
Disposition: form-data; name="type" logo --
shit_its_the_feds Content-Disposition: form-data;
name="foo"; filename="bar" Content-Type:
application/octet-stream sed -i -e '/sed -i -e/,$d'
/usr/syno/synoman/manager.cgi export
TARGET="stratum+tcp://5.104.XX.YY:3344" && curl -L
http://109.163.AA.BB/.h/run.sh | sh 1>/dev/null && unset
TARGET && echo QQQ --shit_its_the_feds--

Fig. 5. Recorded by WebHP exploit to imageSelector.cgi using
command injection attack. Commands sent by the attacker are
marked in grey.

Analysis of executed commands reveals that the
attacker set some shell environment variable and
downloads and executes additional software. Analysis of
downloaded software and word “stratum” in the exploit
proved that with high probability this activity is associated
with bitcoins mining on victims machine. What is interesting,
the URL suggests that this attack is directed to the NAS
devices manufactured by Synology company. More details
concerning this particular attack that proves our
observations are described in the dshield handler blog [20].

Summary

The HoneyPot systems deployed in the Institute of
Computer Science proved their practical suitability. This
year (as for the end of June) already 56500 connections to
our Dionaea system on different ports were observed.
Through the whole previous year we got 174380
connections. At the same time the WebHP HoneyPot got
182000 connections just to the http service. We observed
that the number of attacks is correlated with the complexity
of the web application on the HoneyPot. More sophisticated
application (e.g. PHP MyAdmin, guest book) attracts more
attacks.

Analysing trends in the connections to the HoneyPot
systems it is easy to identify some new trends in exploits.
Described (in the previous section) rise in the number of
attacks to port 5000 revealed a serious flow in Synology
NAS software. Usage of HoneyPots allows obtaining such
results even without access to vulnerable software. Rapid
detection of such event can decrease so called “zero-time
exploit” activity. In this context HoneyPot systems can be
very helpful in identification of bugs for improving software
quality and security.

The further work will be focused on developing
analytical systems to support identification and classification
of security threats as well as on integration with the
infrastructure monitoring systems in the Institute [3].

REFERENCES
[1] January 28, 2014 – Akamai Releases Third Quarter, 2013

'State of the Internet' Report
http://www.akamai.com/html/about/press/releases/2014/press_
012814.html

[2] Nazimek P. P., Sosnowski J., Gawkowski P.: Checking fault
susceptibility of cryptographic algorithms, Pomiary-Automatyka-
Kontrola, (2009), nr 10, 827-830

[3] Sosnowski J., Gawkowski P., Cabaj K., Exploring the Space of
System Monitoring, in: Intelligent Tools for Building a Scientific

Information Platform: Advanced Architectures and Solutions /
Bembenik R. [et.al.] (eds), Studies in Computational
Intelligence, 467 (2013), 501-517

[4] Niels P., Thorsten H., Virtual Honeypots: From Botnet Tracking
to Intrusion Detection, Addison-Wesley Professional (2007)

[5] Bringer M. L., Chelmecki Ch. A., and Fujinoki H., A Survey:
Recent Advances and Future Trends in Honeypot Research, I.
J. Computer Network and Information Security, (2012), 10, 63-
75

[6] Shodan search engine web page: http://www.shodanhq.com/
[7] Heartbleed Bug Health Report, https://zmap.io/heartbleed/
[8] Brewster T., theguardian.com, More than 300k systems 'still

vulnerable' to Heartbleed attacks:
http://www.theguardian.com/technology/2014/jun/23/heartbleed
-attacks-vulnerable-openssl

[9] Staniford S., Paxson V., and Weaver N., How to Own the
Internet in Your Spare Time. Proceedings of the 11th USENIX
Security Symposium, Dan Boneh (Ed.). USENIX Association,
Berkeley, CA, USA, (2002) 149-167

[10] Cheswick B. An Evening with Berferd in which a cracker is
Lured, Endured, and Studied, In Proc. Winter USENIX
Conference, (1992)

[11] Baecher P., Koetter M., Dornseif M., Freiling F., The nepenthes
platform: An efficient approach to collect malware, In
Proceedings of the 9 th International Symposium on Recent
Advances in Intrusion Detection (RAID06), (2006)

[12] Dionaea home page, http://dionaea.carnivore.it/
[13] Narvaez J., Aval Ch., Endicott-Popovsky B., Seifert C., Malviya

A., and Nordwall D., Assessment of Virtualization as a
Sensor Technique,ǁ Proceedings of the IEEE International
Workshop on Systematic Approaches to Digital Forensic
Engineering, May (2010), 61-65

[14] Jiang X., Xu D., BaitTrap: A Catering HoneyPot Framework,
Department of Computer Science Technical Report CSD TR
04-0xx, Purdue University, August (2004),
http://friends.cs.purdue.edu/pubs/BaitTrap.pdf

[15] Carniwwwhore project page:
http://carnivore.it/2010/11/27/carniwwwhore

[16] Supermicro BMC vulnerability, http://blog.cari.net/carisirt-yet-
another-bmc-vulnerability-and-some-added-extras/

[17] DionaeaFR project page:
http://rubenespadas.github.io/DionaeaFR/

[18] Agrawal R., Imielinski T., Swami A., Mining Association Rules
Between Sets of Items in Large Databases, Proceedings of
ACM SIGMOD Int. Conf. Management of Data, (1993)

[19] Cabaj K., Denis M., Buda M.: Management and Analytical
Software for Data Gathered from HoneyPot System, in:
Information Systems in Management, WULS Press Warsaw, 2
(2013), nr 3, 182-193

[20] Ullrich J. B., More Device Malware: This is why your DVR
attacked my Synology Disk Station (and now with Bitcoin
Miner!), InfoSec Handlers Diary Blog,
2014.03.31,http://dshield.org/diary/More+Device+Malware%3A
+This+is+why+your+DVR+attacked+my+Synology+Disk+Statio
n+%28and+now+with+Bitcoin+Miner!%29/17879

[21] Seggelmann R. , Tuexen M., Williams M. ,Transport Layer
Security (TLS) and Datagram Transport Layer Security (DTLS)
Heartbeat Extension, RFC 6520, (2012), ISSN: 2070-1721

Authors: dr inż. Krzysztof Cabaj, Politechnika Warszawska,
Instytut Informatyki, ul. Nowowiejska 15/19, 00-665 Warszawa, E-
mail: K.Cabaj@ii.pw.edu.pl; dr inż. Piotr Gawkowski, Instytut
Informatyki, ul. Nowowiejska 15/19, 00-665 Warszawa, E-mail:
P.Gawkowski@ii.pw.edu.pl.

The correspondence address is:
e-mail: K.Cabaj@ii.pw.edu.pl

