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Abstract. The aim of this paper is to compare five algorithms for Independent Component Analysis. The algorithms are compared with regard to 
performance for separating three and seven input signals. It also examined how time and number of independent components affect on separation 
precision. Professional sound recordings and their mixes were used for all tests. 
 
Streszczenie. W artykule porównano pięć popularnych algorytmów z rodziny analizy składowych niezależnych. Algorytmy porównywane były pod 
kątem wydajności dla trzech oraz siedmiu sygnałów wejściowych. Badano również jak czas działania algorytmu oraz zwiększenie liczby składowych 
wejściowych wpływa na dokładność separacji. Do testów zastosowano profesjonalnie nagrane próbki śpiewu oraz ich mieszanki. (Porównanie 
wydajności algorytmów ICA w ślepej separacji sygnałów dźwiękowych). 
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Introduction 
 Party where a lot of conversations are going on at the 
same time, music concert where the sound production is 
very dynamic and mixed with fans shouting, cars noises are 
often artifacts in recorded material. It is not always possible 
or available to record in studio, where microphones are 
good enough to pick up high quality sound. Almost all 
measured signals consist of multiple other signals. it is 
possible to remove artifacts. There are a lot of way to do it, 
but a lot of them are not good enough.  
 Let's imagine the room where two people are talking at 
the same time, both generate sound waves. In the same 
room two microphones are recording the same source from 
different distances. After finish recording, two signals are 
available. Is it possible to separate sounds from the 
mentioned mixture of signals[4]? Problem like this is called 
the cocktail party problem. Principal component analysis 
and independent components analysis are perhaps the 
most popular methods for solving the problem of BSS.  Both 
of them can be used as technique to separate independent 
sources linearly mixed in several sensors, but as was 
shown [3] the result of PCA can be far from perfect.  
A separation problem of acoustic signals can be widely 
used in many different fields. As an examples of ICA usage 
can be mentioned: speech recognition, controlling cars by 
voice, preparation of radio material and many others. 
 This paper compares the five ICA algorithms, symmetric 
orthogonal FastICA, deflation-based FastICA, Infomax, 
Cubica and KernelICA. The algorithms were compared by 
examining their efficiency and accuracy of the separation. 
Two types of tests have been used for this purpose, a) 
separation of three independent components, b) separation 
of seven independent components.  
 Hence, three questions are posed in the paper: 
1. Which algorithm has the best performance? 
2. How the number of independent components relates to 
performance? 
3. How performance relates to separation precision? 
The results of the experiments, together with a short 
discussion, are presented in the paper. 
 
Independent Component Analysis  
 The problem of a blind source separation (BSS) consist 
in finding a matrix W such that the linear transformation will 
allow to recover the source signals from a set of mixed 
signals [15-16]. The term ‘blind’ means that no prior 
information about the source signals or the mixing process 
is available [15].  

 Independent Component Analysis (ICA) is one of the 
most popular BSS method. ICA problem can be stated as 
follows. Let's assume that there are n linear mixtures  

nxx ,...,1  of n independent components. Vector x 

(observed signals) can be written as: 

(1)    As = x  
where A represents a mixing matrix with the size of n×n, 
and s is the vector of independent components. The aim of 
ICA is to find a matrix W (i.e. an inverse of the matrix A) to 
reverse the mixing effect. Then, after computing the matrix 
W, we can obtain the independent components by [17-18]:  
(2)    s wx=y   

 Most of the popular ICA algorithms put some constraints 
on the mixed signals. First of them is a statistical 
independence between source signals s; second, a non-
Gaussian distribution of the source signals and the third - 
the equality of the number of source signals and the 
number of mixture signals. While two first constrains are 
main assumptions utilized by many algorithms, the third one 
is introduced only to decrease the algorithm complexity (it 
causes that the mixing matrix is square). Furthermore, it is 
assumed that each source signal has the unit variance 

1}E{s2
i  . To hold this assumption, the matrix of the 

source signals is whitened before the ICA calculation [17-
18]. One more assumption, introduced only to simplify the 
algorithm, is that all mixture signals are centered. 
As was mentioned earlier, ICA does not require any prior 
information about the source signals. Instead, ICA 
algorithms utilize the concept of statistical independency of 
the mixed signals. According to the formal definition, the 
variables a and b are said to be independent if information 
about the value a does not give any information about the 
value b and vice versa [16], [18]. Technically, independence 
can be defined in terms of the probability density function 
[17]: 
 (3)  )()...()(),...,, mm2211m21 xfxfxfxxf(x   

 There are two main approaches to measuring 
independence: maximization of non-Gaussianity and 
minimization of mutual information. Most of the existing ICA 
algorithms are based on one of them. When the first 
approach is applied, the task for the algorithm is to modify 
the components in such a way to obtain the source signals 
of strong non-Gaussian distribution (the assumption is: the 
stronger non-Gaussianity, the stronger independence [17]). 
In other words, the distributions of the mixture signals have 
to be more Gaussian than the source signals. This 



76                                                                                PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 2/2015 

approach utilizes various measures of non-Gaussianity, 
like: kurtosis, negentropy, approximations of negentropy 
and others [18].  
 Mutual information, utilized in the second approach, 
informs how much information about the variable a can be 
gain from the information about the variable b. Since 
smaller value of mutual information means that more 
information about a given system is stored in the variables 
[17], ICA algorithms based on mutual information approach 
minimize the mutual information of the system outputs [18]. 
 
KernelICA 

The Kernel ICA algorithm is based on the minimization 
of a contrast function based on Canonical Correlation 
Analysis. This approach is based upon the theory of 
reproducing kernel Hilbert spaces. Denoting by 

m21 xxx ,...,,  data vector and by ), ji xK(x kernel, the 

algorithm can be written as follows: 
1. Whitening the input signals by matrix P  
2. The contrast function C(W)  is minimized with respect to 

W , in the following way: 

a) The centered Gram matrices m21 KKK ,...,, of the 

estimated sources },...,, m21 yy{y , where ii Wxy   are 

computed. 
b) The minimal eigenvalue of the generalized eigenvector 

equation ),...,( 1

^

mKKK
F  is defined as  kk DK   

c) Then 

 (4) ),...,(log
2

1
),...,()( 1

^

1

^

m

K

F KKKmKWC F
I    

 

Cubica 
The name of algorithm comes from cumulant term 
(Cumulant-based Independent Component Analysis). It is 
based on the diagonalization of cumulant tensors[10][11] 
and takes third- and fourth-order cumulant tensors 

),( )()( yy CC


 into account simultaneously.[11]  Algorithm 

uses contrast function which can be written as 
follows[10][11]:  

(5) 2)(2)(
34 )(

!4

1
)(

!3

1
)( yy CCy

     

Independent components are calculated by maximalization 

of 34  function. 
 

FastICA - Deflation Approach 
The FastICA algorithm, proposed by Hyvärinen and Oja, is 
an iterative method to find local maxima of a defined cost 
function [17-18], [3]. The purpose of this algorithm is to find 

the matrix of weights w such that the projection )( xwT  

maximizes non-Gaussianity [3], [18]. As a measure for non-
Gaussianity, simple estimation of negentropy based on the 
maximum entropy principle is used [17-18]: 

(6)  2)}]({)}({[)( yGEyGEvJ   
where:  y – standardized non-Gaussian random variable,  

– standardized random variable with Gaussian distribution, 
G(.) - any non-quadratic function. 

There are two classes of FastICA algorithms, the 
deflation algorithms (called also one-unit algorithms) and 
the symmetric algorithms [19]. In the deflation approach, the 
independent components (ICs) are extracted sequentially, 

one by one. The algorithm can be summarized as follows 
[18], [20]: 

1. Choose an initial vector w (e.g. random) 
2. Do steps 3-6 

3. wxwgExwxgEw )}({)}({ '   \ 

4. 
|||| 




w

w
w  

5. Do the Gram-Schmidt orthogonalization: 
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6. Stop if not converged 
 

Gram-Schmidt procedure, used in the algorithm, 
prevents different vectors from matrix w from converging to 
the same maxima [18]. The order, in which the independent 
components are extracted, depends on the initial value of  
w .  

 

FastICA - Symmetric Approach 
The only difference between deflation approach and 

symmetric approach is the procedure of weights calculation. 
While in deflation approach vectors of weights are 
calculated one by one, in symmetric approach the 
estimation of all components (all weights vectors) proceeds 
in parallel [18-19]. Instead of Gram-Schmidt procedure, the 
following formula is used in the orthogonalization step: 

(6)    wwww T 2/1)(   

where w  is the matrix of weights vectors T
nww ),...,( 1  . 

The square root of Tww  is obtained from the eigenvalue 

decomposition of TT QDQww   as [21]:  

(7)                      TT QQDww 2/12/1)(    

where Q  is the matrix of eigenvectors and D  is the 

diagonal matrix of eigenvalues.  
The algorithm is performed until the stop condition (e.g. 
given by 7 [19]) is met: 

(8)   )))((min(1 old
T wwdiagabs   

where   is a chosen constant. 

Infomax 
Infomax algorithm is based on the general optimization 

principle for neural networks and other processing systems 
described by Linsker in 1987 [22]. In general this principle 
says that a function that maps a set of input values a to a 
set of output values b should be chosen or learned so as to 
maximize the average Shannon mutual information 
between a and b. The ICA algorithm utilizing this principle 
was first proposed in 1995 by Bell and Sejnowski [23] and 
then in 1997 optimized by Amari [18], [20]. 

Infomax algorithm for calculating independent 
components is based on the maximization of the output 
entropy of a neural network with non-linear outputs [18]. 
The most essential parameter of this algorithm is a learning 
rate which does not need to be constant over time and 
which should give a good compromise between speed of 
learning and estimation precision [18], [24]. The weights of 
this neural network are updated according to the following 
formula [17], [20], [25]: 
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(9)  k
T
kkkkk wyygIww ])(2[1    

where: y – matrix of source estimation ( Wxy  ); k  – 

number of iteration;  l  – the identity matrix;  k  – learning 

rate which may depend on k ; (.)g  – a nonlinear function. 
Mostly a classic logistic function is used as a nonlinear 

function g  [25]:  

(10)  
ye

yg



1

1
)(  

however, sometimes also its extended version is applied: 
(11)  )tanh()( yyyg   
Using (9), the Infomax algorithm can be summarized as 
follows [20]: 
1. )(sourcespermx   = perm(sources);   

2. xwy   

3. 
yke

g



1

1
 

4. Tyggu    

5. gulgu  2   

6. kkkk wguww  1   
 

where perm  is random permutation. 
 

Experimental Settings 
 In all experiments the same data set was used - a data 
set belongs to West Pomeranian University of 
Technology.[14] The data set is divided into twenty 
directories. The name of the each directory entry contains a 
number of singer and the character gender an 'f' for female 
or a 'm' for male.  The next levels of directories contains 
again a number of signer and the character gender but the 
name contains also  a number of exercise as a e01, e03 
and e05. All exercises have been made in legato technique. 
The instructions for each exercise are as follows: 
1. u o, i, e, a, : sing- e01   

2. do a, la, do, a, la, do, : sing- e03   

3. y. o, i, e, a, : sing- e05   

 The sound file name contains the same information as 
subdirectories name. In addition it has some useful 
informations: 
• pN  – where N  is phrase number 

• oN  – where N  is octave number 
• nN  – where N  is sound number in octave in the 
ascending direction, including semitones 
•  d1 or d0 – 0  means the ascending direction, 1  
descending 
• p or v  – v  for vocal or p  for piano 

The samples length depends on the exercise. It is not 
regular. Bitrate for each sample is 768kb/s while sampling 
rate is 48000 Hz. All files are monophonic with *.wav 
extension. The symbol od used coded is PCM S16 LE. All 
data set contains 2277 files. 
Seven files have been chosen for test. Chosen set has 
sings with melody as well as single piano. Piano sounds 
have been replicated and saved in single file. Full names of 
chosen files are: 
• s18m_e03_p26_o2_n10_d0_v.wav 
• s20f_e05_p29_o4_n03_d0_v.wav 
• s18m_e01_p22_o3_n11_d0_v.wav 
• s20f_e05_p34_o3_n10_d0_v.wav 
• s12m_e03_p12_o3_n12_d0_p.wav 

• s06f_e05_p28_o3_n08_d0_p.wav 
• s06f_e05_p23_o4_n01_d0_v.wav 
 

New files are named with the convention of wave#, 
where # starts at 1 and increments automatically with each 
new file. All of the files differed in length and so it was 
necessary to standardize to the length of the shortest file. 
Then performed, two types of tests. The First one separates 
mixing of three independent components, second one of 
seven. Signals for first test are obtained from below 
formulas: 
• wave2*2.14 -  wave1= mix1              

•             wave2;*4.13 + wave1* 1.9 = mix2  

•             wave2;*1.12 + wave3*2.03 = mix3   
 

Formulas for second test signals are: 

• 
        * wave7; 0.4 - * wave5 0.8

 + * wave2 2.14 - * wave1 0.89 = mix1
  

• 
         * wave5; 5.6 + * wave6 0.4

 - * wave4 4.13 + * wave3 0.7 = mix2
  

• 
            * wave4; 0.4

 + * wave2 3.12 + * wave3 0.73 = mix3
  

• 
    * wave4; 1.1 + * wave3 1.54

 + * wave2 2.14 -  wave1= mix4
  

• 
            * wave6; 2.4 + * wave5 4.13

 + * wave4 1.9 = mix5
  

• 
            * wave4; 1.6 - * wave1 0.2

 + * wave6 0.62 + * wave7 1.3 = mix6
  

• 
     * wave6; 4.3

 + * wave7 1.12 + * wave5 2.03 = mix7
  

 

The resulting file are named with the convention of mix#, 
where # starts at 1 and increments automatically. 
Implementations of KernelICA and Cubica algorithms can 
be found from the Internet. The first one is available at: [17], 
the second one at: [18]. Both of them where started with 
default parameters. Two FastICA and Infomax algorithms 
were implemented by author. The parameters for FastICA 
are: 
• 0.001epsilon  (for stop condition) 

• 1000=ationsmaxNumIter , the iterations limit 
• the initial vector is random. 
 
Parameters for Infomax are: 
• 0.001=lrate  - learning rate, 

• 
ye

yg



1

1
)( - optimization function, 

• 0.0001epsilon   for stop condition. 

 The running time of algorithms is measured by counting 
the elapsed CPU clock. Results from intercorrelation tests 
provided evidence of how good separation is achieved with 
the all ICA's algorithms. Cross-correlation is a measure of 
similarity of two signals x(t)  in time t  and y(t)  in time 

Tt   and can be written as follows[12]: 

(12)  


T

T
XY dttytx

T
R

0

)()(
1

lim)(   

where: x(t)  and y(t)  - input data, )(XYR  - cross 

correlation function for signals x(t)  and y(t) , t  - delay 

between signals, T  - period. 
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The result set returned by the function are corelation 
values. The cross correlation function is the normalized 
cross-covariance function. The normalized cross-correlation 
function known as the cross-correlation function coefficient 
(normalized cross-covariance function) is defined as: 

(13) 
22

)](),(cov[
)](),([

yx

tytx
tytx





  

where: 2
x - standard deviation of x , 2

y - standard 

deviation of y  
 The cross-correlation function coefficient was used to 
define a measure of similarity between signals. These 
cross-correlation function coefficient values are in the range 
-1.0 for ideal negative correlation to 1.0 for ideal positive 
correlation. Closer to 0 value will result worst similarity.[15]. 
   
Results 
 The experiments were performed with the application 
prepared for the Matlab 7.12.0 environment. The tests were 
performed on a computer with Processor type: Intel(R) 
Core(TM) i3-2350 @ 2.30 GHz, Total Physical Memory: 
10.0 GB and Total Disk Space: 500 GB. Operating system 
was Windows 7 and all the updated patches installed.  
The main aim of the experiments described in the paper 
was to find out what is the performance and how it is related 
to the accuracy of the five ICA algorithms. The running 
times of the algorithms are shown in Table 1: 
 

Table 1. The running times of the ICA algorithms. 

 The average running times of the 
algorithms: 

Algorithm For three 
components: 

For seven 
components: 

KernelICA 557.95 7126.6 
Cubica 0.62 4.34 

FastICA-Symmetric 2.08 11.6 
FastICA-Deflation 2.22 10.83 

Infomax 22.70 89.23 
 

 The second shortest time is obtained by the Cubica 
algorithm. For three independent components it was shorter 
than 1 second, for seven was about 4 seconds. Both 
FastICA algorithms get similar times, 2 seconds for three IC 
and 11 for seven. Separation by Infomax was calculated in 
22 and 89 seconds. The KernelICA algorithm requires 
longest times. 

As was mentioned, the cross-correlation function 
coefficient can be used as a reliable measure of the 
separation quality. Since standard ICA comes out with an 
unordered set of sources, each input signals has be 
compared with each out. Outputs are named with as a U#, 
where # starts at 1 and increments automatically. The 
example of is shown in Table 2: 
 
Table 2. Example of the accuracy of the separation. 

KernelICA 
ρ[x(t),y(t) ] U1 U2 U3 

S1 1.00 0.01 0.37 
S2 0.00 0.99 1.00 
S3 0.00 0.00 0.00 

 
All output signals were compared in the way 

schematically shown in Table 2. All average results are 
grouped according to the ICA algorithms. Tables 3 and 4 
presents a summary of separation accuracy results for 3 
and 7 independent components. Tables contain only results 
for matching output signals to corresponding unmixed wave 
file.  
 

Table 3. Separation accuracy of ICA for three independent 
components. 

 KernelICA Cubica FastICA 
– sym. 

FastICA 
– defl. 

Infomax 

S1 1 1 1 1 0.79 
S2 1 1 0.99 0.99 0.82 
S3 1 1 1 1 0.99 

Average: 1 1 0.99 0.99 0.84 
 

Table 3 shows that mixing of three waves files are 
correctly separated by almost all algorithms. Only Infomax 
not correctly solved the separation. Outputs from KernelICA 
and Cubica are perfect - cross-correlation function 
coefficient were 1 for them. 
 

Table 4. Separation accuracy of ICA for seven independent 
components. 

 KernelICA Cubica FastICA 
– sym. 

FastICA 
– defl. 

Infomax 

S1 0.99 0.99 0.99 0.99 0.83 
S2 0.99 0.99 0.99 0.99 0.86 
S3 0.88 0.70 0.73 0.99 0.73 
S4 0.88 0.71 0.73 0.99 0.68 
S5 0.99 0.99 0.99 0.99 0.99 
S6 0.99 0.99 0.99 0.99 0.99 
S7 0.99 0.99 0.99 0.99 0.97 

Average: 0.96 0.91 0.92 0.99 0.87 
 

The average separation values that are presented in 
Table 4 shows how the independent components number 
influence the ICA precision. The average precision of 
Infomax increased to 0.87, however this is still the worst 
value. Deflation FastICA keeps good result (0.99 of average 
precision). The rest of algorithms get worse results than for 
previous test. 
 
Conclusion  
 In Section 1 three questions regarding the efficiency of 
ICA transformation were posed: 
1. Which algorithm has the best performance? 
2. How the number of independent components relates to 
performance? 
3. How performance relates to separation precision? 
 Table 1 can used to answer the first question. The 
shortest time for 3 and 7 independent components was 
obtained by Cubica. The second shortest time was almost 4 
times longer for 3 signals and twice time longer for seven. 
This shows how efficiency Cubica is to the goals of these 
separations. Unfortunately its perfect precision is lost. The 
best precision is achieved  by FastICA deflation algorithm. 
The average value of it is 0.99 - this means that it is almost 
perfect. This is also the only algorithm that keeps previous 
precision for seven independent components.  Time is 
increased to four times more than for three inputs, but it 
was still good enough. Good precision was also obtained by 
KernelICA, but the calculation time was hundreds of times 
longer than for other ICA's methods. Unfortunately this 
property is not suitable for normal tasks. The Infomax yields 
average efficiency results, and worst separation precision. 
The reason for this may be in wrong input parameter of the 
Infomax algorithm. 
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