
PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 2/2015 75

 Paweł GÓRSKI

West Pomeranian University of Technology, Faculty of Computer Science and Information Technology

doi:10.15199/48.2015.02.19

Performance comparison of ICA algorithms for audio blind
source separation

Abstract. The aim of this paper is to compare five algorithms for Independent Component Analysis. The algorithms are compared with regard to
performance for separating three and seven input signals. It also examined how time and number of independent components affect on separation
precision. Professional sound recordings and their mixes were used for all tests.

Streszczenie. W artykule porównano pięć popularnych algorytmów z rodziny analizy składowych niezależnych. Algorytmy porównywane były pod
kątem wydajności dla trzech oraz siedmiu sygnałów wejściowych. Badano również jak czas działania algorytmu oraz zwiększenie liczby składowych
wejściowych wpływa na dokładność separacji. Do testów zastosowano profesjonalnie nagrane próbki śpiewu oraz ich mieszanki. (Porównanie
wydajności algorytmów ICA w ślepej separacji sygnałów dźwiękowych).

Keywords: Independent Component Analysis, FastICA, Infomax, KernelICA, Cubica
Słowa kluczowe: Analiza Składowych Niezależnych, FastICA, Infomax, KernelICA, Cubica

Introduction
 Party where a lot of conversations are going on at the
same time, music concert where the sound production is
very dynamic and mixed with fans shouting, cars noises are
often artifacts in recorded material. It is not always possible
or available to record in studio, where microphones are
good enough to pick up high quality sound. Almost all
measured signals consist of multiple other signals. it is
possible to remove artifacts. There are a lot of way to do it,
but a lot of them are not good enough.
 Let's imagine the room where two people are talking at
the same time, both generate sound waves. In the same
room two microphones are recording the same source from
different distances. After finish recording, two signals are
available. Is it possible to separate sounds from the
mentioned mixture of signals[4]? Problem like this is called
the cocktail party problem. Principal component analysis
and independent components analysis are perhaps the
most popular methods for solving the problem of BSS. Both
of them can be used as technique to separate independent
sources linearly mixed in several sensors, but as was
shown [3] the result of PCA can be far from perfect.
A separation problem of acoustic signals can be widely
used in many different fields. As an examples of ICA usage
can be mentioned: speech recognition, controlling cars by
voice, preparation of radio material and many others.
 This paper compares the five ICA algorithms, symmetric
orthogonal FastICA, deflation-based FastICA, Infomax,
Cubica and KernelICA. The algorithms were compared by
examining their efficiency and accuracy of the separation.
Two types of tests have been used for this purpose, a)
separation of three independent components, b) separation
of seven independent components.
 Hence, three questions are posed in the paper:
1. Which algorithm has the best performance?
2. How the number of independent components relates to
performance?
3. How performance relates to separation precision?
The results of the experiments, together with a short
discussion, are presented in the paper.

Independent Component Analysis
 The problem of a blind source separation (BSS) consist
in finding a matrix W such that the linear transformation will
allow to recover the source signals from a set of mixed
signals [15-16]. The term ‘blind’ means that no prior
information about the source signals or the mixing process
is available [15].

 Independent Component Analysis (ICA) is one of the
most popular BSS method. ICA problem can be stated as
follows. Let's assume that there are n linear mixtures

nxx ,...,1 of n independent components. Vector x

(observed signals) can be written as:

(1) As = x
where A represents a mixing matrix with the size of n×n,
and s is the vector of independent components. The aim of
ICA is to find a matrix W (i.e. an inverse of the matrix A) to
reverse the mixing effect. Then, after computing the matrix
W, we can obtain the independent components by [17-18]:
(2) s wx=y 

 Most of the popular ICA algorithms put some constraints
on the mixed signals. First of them is a statistical
independence between source signals s; second, a non-
Gaussian distribution of the source signals and the third -
the equality of the number of source signals and the
number of mixture signals. While two first constrains are
main assumptions utilized by many algorithms, the third one
is introduced only to decrease the algorithm complexity (it
causes that the mixing matrix is square). Furthermore, it is
assumed that each source signal has the unit variance

1}E{s2
i  . To hold this assumption, the matrix of the

source signals is whitened before the ICA calculation [17-
18]. One more assumption, introduced only to simplify the
algorithm, is that all mixture signals are centered.
As was mentioned earlier, ICA does not require any prior
information about the source signals. Instead, ICA
algorithms utilize the concept of statistical independency of
the mixed signals. According to the formal definition, the
variables a and b are said to be independent if information
about the value a does not give any information about the
value b and vice versa [16], [18]. Technically, independence
can be defined in terms of the probability density function
[17]:
 (3))()...()(),...,, mm2211m21 xfxfxfxxf(x 

 There are two main approaches to measuring
independence: maximization of non-Gaussianity and
minimization of mutual information. Most of the existing ICA
algorithms are based on one of them. When the first
approach is applied, the task for the algorithm is to modify
the components in such a way to obtain the source signals
of strong non-Gaussian distribution (the assumption is: the
stronger non-Gaussianity, the stronger independence [17]).
In other words, the distributions of the mixture signals have
to be more Gaussian than the source signals. This

76 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 2/2015

approach utilizes various measures of non-Gaussianity,
like: kurtosis, negentropy, approximations of negentropy
and others [18].
 Mutual information, utilized in the second approach,
informs how much information about the variable a can be
gain from the information about the variable b. Since
smaller value of mutual information means that more
information about a given system is stored in the variables
[17], ICA algorithms based on mutual information approach
minimize the mutual information of the system outputs [18].

KernelICA

The Kernel ICA algorithm is based on the minimization
of a contrast function based on Canonical Correlation
Analysis. This approach is based upon the theory of
reproducing kernel Hilbert spaces. Denoting by

m21 xxx ,...,, data vector and by), ji xK(x kernel, the

algorithm can be written as follows:
1. Whitening the input signals by matrix P
2. The contrast function C(W) is minimized with respect to

W , in the following way:

a) The centered Gram matrices m21 KKK ,...,, of the

estimated sources },...,, m21 yy{y , where ii Wxy  are

computed.
b) The minimal eigenvalue of the generalized eigenvector

equation),...,(1

^

mKKK
F is defined as  kk DK 

c) Then

 (4)),...,(log
2

1
),...,()(1

^

1

^

m

K

F KKKmKWC F
I  

Cubica
The name of algorithm comes from cumulant term
(Cumulant-based Independent Component Analysis). It is
based on the diagonalization of cumulant tensors[10][11]
and takes third- and fourth-order cumulant tensors

),()()(yy CC


 into account simultaneously.[11] Algorithm

uses contrast function which can be written as
follows[10][11]:

(5) 2)(2)(
34)(

!4

1
)(

!3

1
)(yy CCy

   

Independent components are calculated by maximalization

of 34 function.

FastICA - Deflation Approach
The FastICA algorithm, proposed by Hyvärinen and Oja, is
an iterative method to find local maxima of a defined cost
function [17-18], [3]. The purpose of this algorithm is to find

the matrix of weights w such that the projection)(xwT

maximizes non-Gaussianity [3], [18]. As a measure for non-
Gaussianity, simple estimation of negentropy based on the
maximum entropy principle is used [17-18]:

(6) 2)}]({)}({[)(yGEyGEvJ 
where: y – standardized non-Gaussian random variable,

– standardized random variable with Gaussian distribution,
G(.) - any non-quadratic function.

There are two classes of FastICA algorithms, the
deflation algorithms (called also one-unit algorithms) and
the symmetric algorithms [19]. In the deflation approach, the
independent components (ICs) are extracted sequentially,

one by one. The algorithm can be summarized as follows
[18], [20]:

1. Choose an initial vector w (e.g. random)
2. Do steps 3-6

3. wxwgExwxgEw)}({)}({ '   \

4.
|||| 




w

w
w

5. Do the Gram-Schmidt orthogonalization:

jj

p

j

T
ppp wwwww 


 

1
111

11

1
1




 

p
T
p

p
p

ww

w
w

6. Stop if not converged

Gram-Schmidt procedure, used in the algorithm,
prevents different vectors from matrix w from converging to
the same maxima [18]. The order, in which the independent
components are extracted, depends on the initial value of
w .

FastICA - Symmetric Approach
The only difference between deflation approach and

symmetric approach is the procedure of weights calculation.
While in deflation approach vectors of weights are
calculated one by one, in symmetric approach the
estimation of all components (all weights vectors) proceeds
in parallel [18-19]. Instead of Gram-Schmidt procedure, the
following formula is used in the orthogonalization step:

(6) wwww T 2/1)(

where w is the matrix of weights vectors T
nww),...,(1 .

The square root of Tww is obtained from the eigenvalue

decomposition of TT QDQww  as [21]:

(7) TT QQDww 2/12/1)( 

where Q is the matrix of eigenvectors and D is the

diagonal matrix of eigenvalues.
The algorithm is performed until the stop condition (e.g.
given by 7 [19]) is met:

(8) )))((min(1 old
T wwdiagabs

where  is a chosen constant.

Infomax
Infomax algorithm is based on the general optimization

principle for neural networks and other processing systems
described by Linsker in 1987 [22]. In general this principle
says that a function that maps a set of input values a to a
set of output values b should be chosen or learned so as to
maximize the average Shannon mutual information
between a and b. The ICA algorithm utilizing this principle
was first proposed in 1995 by Bell and Sejnowski [23] and
then in 1997 optimized by Amari [18], [20].

Infomax algorithm for calculating independent
components is based on the maximization of the output
entropy of a neural network with non-linear outputs [18].
The most essential parameter of this algorithm is a learning
rate which does not need to be constant over time and
which should give a good compromise between speed of
learning and estimation precision [18], [24]. The weights of
this neural network are updated according to the following
formula [17], [20], [25]:

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 2/2015 77

(9) k
T
kkkkk wyygIww])(2[1  

where: y – matrix of source estimation (Wxy ); k –

number of iteration; l – the identity matrix; k – learning

rate which may depend on k ; (.)g – a nonlinear function.
Mostly a classic logistic function is used as a nonlinear

function g [25]:

(10)
ye

yg



1

1
)(

however, sometimes also its extended version is applied:
(11))tanh()(yyyg 
Using (9), the Infomax algorithm can be summarized as
follows [20]:
1.)(sourcespermx  = perm(sources);

2. xwy 

3.
yke

g



1

1

4. Tyggu 

5. gulgu  2

6. kkkk wguww  1

where perm is random permutation.

Experimental Settings
 In all experiments the same data set was used - a data
set belongs to West Pomeranian University of
Technology.[14] The data set is divided into twenty
directories. The name of the each directory entry contains a
number of singer and the character gender an 'f' for female
or a 'm' for male. The next levels of directories contains
again a number of signer and the character gender but the
name contains also a number of exercise as a e01, e03
and e05. All exercises have been made in legato technique.
The instructions for each exercise are as follows:
1. u o, i, e, a, : sing- e01

2. do a, la, do, a, la, do, : sing- e03

3. y. o, i, e, a, : sing- e05

 The sound file name contains the same information as
subdirectories name. In addition it has some useful
informations:
• pN – where N is phrase number

• oN – where N is octave number
• nN – where N is sound number in octave in the
ascending direction, including semitones
• d1 or d0 – 0 means the ascending direction, 1
descending
• p or v – v for vocal or p for piano

The samples length depends on the exercise. It is not
regular. Bitrate for each sample is 768kb/s while sampling
rate is 48000 Hz. All files are monophonic with *.wav
extension. The symbol od used coded is PCM S16 LE. All
data set contains 2277 files.
Seven files have been chosen for test. Chosen set has
sings with melody as well as single piano. Piano sounds
have been replicated and saved in single file. Full names of
chosen files are:
• s18m_e03_p26_o2_n10_d0_v.wav
• s20f_e05_p29_o4_n03_d0_v.wav
• s18m_e01_p22_o3_n11_d0_v.wav
• s20f_e05_p34_o3_n10_d0_v.wav
• s12m_e03_p12_o3_n12_d0_p.wav

• s06f_e05_p28_o3_n08_d0_p.wav
• s06f_e05_p23_o4_n01_d0_v.wav

New files are named with the convention of wave#,
where # starts at 1 and increments automatically with each
new file. All of the files differed in length and so it was
necessary to standardize to the length of the shortest file.
Then performed, two types of tests. The First one separates
mixing of three independent components, second one of
seven. Signals for first test are obtained from below
formulas:
• wave2*2.14 - wave1= mix1

• wave2;*4.13 + wave1* 1.9 = mix2

• wave2;*1.12 + wave3*2.03 = mix3

Formulas for second test signals are:

•
 * wave7; 0.4 - * wave5 0.8

 + * wave2 2.14 - * wave1 0.89 = mix1

•
 * wave5; 5.6 + * wave6 0.4

 - * wave4 4.13 + * wave3 0.7 = mix2

•
 * wave4; 0.4

 + * wave2 3.12 + * wave3 0.73 = mix3

•
 * wave4; 1.1 + * wave3 1.54

 + * wave2 2.14 - wave1= mix4

•
 * wave6; 2.4 + * wave5 4.13

 + * wave4 1.9 = mix5

•
 * wave4; 1.6 - * wave1 0.2

 + * wave6 0.62 + * wave7 1.3 = mix6

•
 * wave6; 4.3

 + * wave7 1.12 + * wave5 2.03 = mix7

The resulting file are named with the convention of mix#,
where # starts at 1 and increments automatically.
Implementations of KernelICA and Cubica algorithms can
be found from the Internet. The first one is available at: [17],
the second one at: [18]. Both of them where started with
default parameters. Two FastICA and Infomax algorithms
were implemented by author. The parameters for FastICA
are:
• 0.001epsilon  (for stop condition)

• 1000=ationsmaxNumIter , the iterations limit
• the initial vector is random.

Parameters for Infomax are:
• 0.001=lrate - learning rate,

•
ye

yg



1

1
)(- optimization function,

• 0.0001epsilon  for stop condition.

 The running time of algorithms is measured by counting
the elapsed CPU clock. Results from intercorrelation tests
provided evidence of how good separation is achieved with
the all ICA's algorithms. Cross-correlation is a measure of
similarity of two signals x(t) in time t and y(t) in time

Tt  and can be written as follows[12]:

(12)  


T

T
XY dttytx

T
R

0

)()(
1

lim)(

where: x(t) and y(t) - input data,)(XYR - cross

correlation function for signals x(t) and y(t) , t - delay

between signals, T - period.

78 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 2/2015

The result set returned by the function are corelation
values. The cross correlation function is the normalized
cross-covariance function. The normalized cross-correlation
function known as the cross-correlation function coefficient
(normalized cross-covariance function) is defined as:

(13)
22

)](),(cov[
)](),([

yx

tytx
tytx







where: 2
x - standard deviation of x , 2

y - standard

deviation of y
 The cross-correlation function coefficient was used to
define a measure of similarity between signals. These
cross-correlation function coefficient values are in the range
-1.0 for ideal negative correlation to 1.0 for ideal positive
correlation. Closer to 0 value will result worst similarity.[15].

Results
 The experiments were performed with the application
prepared for the Matlab 7.12.0 environment. The tests were
performed on a computer with Processor type: Intel(R)
Core(TM) i3-2350 @ 2.30 GHz, Total Physical Memory:
10.0 GB and Total Disk Space: 500 GB. Operating system
was Windows 7 and all the updated patches installed.
The main aim of the experiments described in the paper
was to find out what is the performance and how it is related
to the accuracy of the five ICA algorithms. The running
times of the algorithms are shown in Table 1:

Table 1. The running times of the ICA algorithms.

 The average running times of the
algorithms:

Algorithm For three
components:

For seven
components:

KernelICA 557.95 7126.6
Cubica 0.62 4.34

FastICA-Symmetric 2.08 11.6
FastICA-Deflation 2.22 10.83

Infomax 22.70 89.23

 The second shortest time is obtained by the Cubica
algorithm. For three independent components it was shorter
than 1 second, for seven was about 4 seconds. Both
FastICA algorithms get similar times, 2 seconds for three IC
and 11 for seven. Separation by Infomax was calculated in
22 and 89 seconds. The KernelICA algorithm requires
longest times.

As was mentioned, the cross-correlation function
coefficient can be used as a reliable measure of the
separation quality. Since standard ICA comes out with an
unordered set of sources, each input signals has be
compared with each out. Outputs are named with as a U#,
where # starts at 1 and increments automatically. The
example of is shown in Table 2:

Table 2. Example of the accuracy of the separation.

KernelICA
ρ[x(t),y(t)] U1 U2 U3

S1 1.00 0.01 0.37
S2 0.00 0.99 1.00
S3 0.00 0.00 0.00

All output signals were compared in the way

schematically shown in Table 2. All average results are
grouped according to the ICA algorithms. Tables 3 and 4
presents a summary of separation accuracy results for 3
and 7 independent components. Tables contain only results
for matching output signals to corresponding unmixed wave
file.

Table 3. Separation accuracy of ICA for three independent
components.

 KernelICA Cubica FastICA
– sym.

FastICA
– defl.

Infomax

S1 1 1 1 1 0.79
S2 1 1 0.99 0.99 0.82
S3 1 1 1 1 0.99

Average: 1 1 0.99 0.99 0.84

Table 3 shows that mixing of three waves files are
correctly separated by almost all algorithms. Only Infomax
not correctly solved the separation. Outputs from KernelICA
and Cubica are perfect - cross-correlation function
coefficient were 1 for them.

Table 4. Separation accuracy of ICA for seven independent
components.

 KernelICA Cubica FastICA
– sym.

FastICA
– defl.

Infomax

S1 0.99 0.99 0.99 0.99 0.83
S2 0.99 0.99 0.99 0.99 0.86
S3 0.88 0.70 0.73 0.99 0.73
S4 0.88 0.71 0.73 0.99 0.68
S5 0.99 0.99 0.99 0.99 0.99
S6 0.99 0.99 0.99 0.99 0.99
S7 0.99 0.99 0.99 0.99 0.97

Average: 0.96 0.91 0.92 0.99 0.87

The average separation values that are presented in
Table 4 shows how the independent components number
influence the ICA precision. The average precision of
Infomax increased to 0.87, however this is still the worst
value. Deflation FastICA keeps good result (0.99 of average
precision). The rest of algorithms get worse results than for
previous test.

Conclusion
 In Section 1 three questions regarding the efficiency of
ICA transformation were posed:
1. Which algorithm has the best performance?
2. How the number of independent components relates to
performance?
3. How performance relates to separation precision?
 Table 1 can used to answer the first question. The
shortest time for 3 and 7 independent components was
obtained by Cubica. The second shortest time was almost 4
times longer for 3 signals and twice time longer for seven.
This shows how efficiency Cubica is to the goals of these
separations. Unfortunately its perfect precision is lost. The
best precision is achieved by FastICA deflation algorithm.
The average value of it is 0.99 - this means that it is almost
perfect. This is also the only algorithm that keeps previous
precision for seven independent components. Time is
increased to four times more than for three inputs, but it
was still good enough. Good precision was also obtained by
KernelICA, but the calculation time was hundreds of times
longer than for other ICA's methods. Unfortunately this
property is not suitable for normal tasks. The Infomax yields
average efficiency results, and worst separation precision.
The reason for this may be in wrong input parameter of the
Infomax algorithm.

Authors

M.Sc., Paweł Górski, West Pomeranian University of
Technology, Faculty of Computer Science and Information
Technology, Żołnierska 49, 71-210 Szczecin, Poland, email:
pagorski@wi.zut.edu.pl.

